//! See `AssistContext` use std::mem; use algo::find_covering_element; use hir::Semantics; use ide_db::base_db::{AnchoredPathBuf, FileId, FileRange}; use ide_db::{ label::Label, source_change::{FileSystemEdit, SourceChange, SourceFileEdit}, RootDatabase, }; use syntax::{ algo::{self, find_node_at_offset, SyntaxRewriter}, AstNode, AstToken, SourceFile, SyntaxElement, SyntaxKind, SyntaxToken, TextRange, TextSize, TokenAtOffset, }; use text_edit::{TextEdit, TextEditBuilder}; use crate::{ assist_config::{AssistConfig, SnippetCap}, Assist, AssistId, AssistKind, GroupLabel, }; /// `AssistContext` allows to apply an assist or check if it could be applied. /// /// Assists use a somewhat over-engineered approach, given the current needs. /// The assists workflow consists of two phases. In the first phase, a user asks /// for the list of available assists. In the second phase, the user picks a /// particular assist and it gets applied. /// /// There are two peculiarities here: /// /// * first, we ideally avoid computing more things then necessary to answer "is /// assist applicable" in the first phase. /// * second, when we are applying assist, we don't have a guarantee that there /// weren't any changes between the point when user asked for assists and when /// they applied a particular assist. So, when applying assist, we need to do /// all the checks from scratch. /// /// To avoid repeating the same code twice for both "check" and "apply" /// functions, we use an approach reminiscent of that of Django's function based /// views dealing with forms. Each assist receives a runtime parameter, /// `resolve`. It first check if an edit is applicable (potentially computing /// info required to compute the actual edit). If it is applicable, and /// `resolve` is `true`, it then computes the actual edit. /// /// So, to implement the original assists workflow, we can first apply each edit /// with `resolve = false`, and then applying the selected edit again, with /// `resolve = true` this time. /// /// Note, however, that we don't actually use such two-phase logic at the /// moment, because the LSP API is pretty awkward in this place, and it's much /// easier to just compute the edit eagerly :-) pub(crate) struct AssistContext<'a> { pub(crate) config: &'a AssistConfig, pub(crate) sema: Semantics<'a, RootDatabase>, pub(crate) frange: FileRange, source_file: SourceFile, } impl<'a> AssistContext<'a> { pub(crate) fn new( sema: Semantics<'a, RootDatabase>, config: &'a AssistConfig, frange: FileRange, ) -> AssistContext<'a> { let source_file = sema.parse(frange.file_id); AssistContext { config, sema, frange, source_file } } pub(crate) fn db(&self) -> &RootDatabase { self.sema.db } // NB, this ignores active selection. pub(crate) fn offset(&self) -> TextSize { self.frange.range.start() } pub(crate) fn token_at_offset(&self) -> TokenAtOffset { self.source_file.syntax().token_at_offset(self.offset()) } pub(crate) fn find_token_syntax_at_offset(&self, kind: SyntaxKind) -> Option { self.token_at_offset().find(|it| it.kind() == kind) } pub(crate) fn find_token_at_offset(&self) -> Option { self.token_at_offset().find_map(T::cast) } pub(crate) fn find_node_at_offset(&self) -> Option { find_node_at_offset(self.source_file.syntax(), self.offset()) } pub(crate) fn find_node_at_offset_with_descend(&self) -> Option { self.sema.find_node_at_offset_with_descend(self.source_file.syntax(), self.offset()) } pub(crate) fn covering_element(&self) -> SyntaxElement { find_covering_element(self.source_file.syntax(), self.frange.range) } // FIXME: remove pub(crate) fn covering_node_for_range(&self, range: TextRange) -> SyntaxElement { find_covering_element(self.source_file.syntax(), range) } } pub(crate) struct Assists { resolve: bool, file: FileId, buf: Vec, allowed: Option>, } impl Assists { pub(crate) fn new(ctx: &AssistContext, resolve: bool) -> Assists { Assists { resolve, file: ctx.frange.file_id, buf: Vec::new(), allowed: ctx.config.allowed.clone(), } } pub(crate) fn finish(mut self) -> Vec { self.buf.sort_by_key(|assist| assist.target.len()); self.buf } pub(crate) fn add( &mut self, id: AssistId, label: impl Into, target: TextRange, f: impl FnOnce(&mut AssistBuilder), ) -> Option<()> { if !self.is_allowed(&id) { return None; } let label = Label::new(label.into()); let assist = Assist { id, label, group: None, target, source_change: None }; self.add_impl(assist, f) } pub(crate) fn add_group( &mut self, group: &GroupLabel, id: AssistId, label: impl Into, target: TextRange, f: impl FnOnce(&mut AssistBuilder), ) -> Option<()> { if !self.is_allowed(&id) { return None; } let label = Label::new(label.into()); let assist = Assist { id, label, group: Some(group.clone()), target, source_change: None }; self.add_impl(assist, f) } fn add_impl(&mut self, mut assist: Assist, f: impl FnOnce(&mut AssistBuilder)) -> Option<()> { let source_change = if self.resolve { let mut builder = AssistBuilder::new(self.file); f(&mut builder); Some(builder.finish()) } else { None }; assist.source_change = source_change.clone(); self.buf.push(assist); Some(()) } fn is_allowed(&self, id: &AssistId) -> bool { match &self.allowed { Some(allowed) => allowed.iter().any(|kind| kind.contains(id.1)), None => true, } } } pub(crate) struct AssistBuilder { edit: TextEditBuilder, file_id: FileId, is_snippet: bool, source_file_edits: Vec, file_system_edits: Vec, } impl AssistBuilder { pub(crate) fn new(file_id: FileId) -> AssistBuilder { AssistBuilder { edit: TextEdit::builder(), file_id, is_snippet: false, source_file_edits: Vec::default(), file_system_edits: Vec::default(), } } pub(crate) fn edit_file(&mut self, file_id: FileId) { self.commit(); self.file_id = file_id; } fn commit(&mut self) { let edit = mem::take(&mut self.edit).finish(); if !edit.is_empty() { match self.source_file_edits.binary_search_by_key(&self.file_id, |edit| edit.file_id) { Ok(idx) => self.source_file_edits[idx] .edit .union(edit) .expect("overlapping edits for same file"), Err(idx) => self .source_file_edits .insert(idx, SourceFileEdit { file_id: self.file_id, edit }), } } } /// Remove specified `range` of text. pub(crate) fn delete(&mut self, range: TextRange) { self.edit.delete(range) } /// Append specified `text` at the given `offset` pub(crate) fn insert(&mut self, offset: TextSize, text: impl Into) { self.edit.insert(offset, text.into()) } /// Append specified `snippet` at the given `offset` pub(crate) fn insert_snippet( &mut self, _cap: SnippetCap, offset: TextSize, snippet: impl Into, ) { self.is_snippet = true; self.insert(offset, snippet); } /// Replaces specified `range` of text with a given string. pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into) { self.edit.replace(range, replace_with.into()) } /// Replaces specified `range` of text with a given `snippet`. pub(crate) fn replace_snippet( &mut self, _cap: SnippetCap, range: TextRange, snippet: impl Into, ) { self.is_snippet = true; self.replace(range, snippet); } pub(crate) fn replace_ast(&mut self, old: N, new: N) { algo::diff(old.syntax(), new.syntax()).into_text_edit(&mut self.edit) } pub(crate) fn rewrite(&mut self, rewriter: SyntaxRewriter) { if let Some(node) = rewriter.rewrite_root() { let new = rewriter.rewrite(&node); algo::diff(&node, &new).into_text_edit(&mut self.edit); } } pub(crate) fn create_file(&mut self, dst: AnchoredPathBuf, content: impl Into) { let file_system_edit = FileSystemEdit::CreateFile { dst: dst.clone(), initial_contents: content.into() }; self.file_system_edits.push(file_system_edit); } fn finish(mut self) -> SourceChange { self.commit(); SourceChange { source_file_edits: mem::take(&mut self.source_file_edits), file_system_edits: mem::take(&mut self.file_system_edits), is_snippet: self.is_snippet, } } }