use either::Either; use hir::{HirDisplay, Local}; use ide_db::defs::{Definition, NameRefClass}; use rustc_hash::FxHashSet; use stdx::format_to; use syntax::{ ast::{ self, edit::{AstNodeEdit, IndentLevel}, AstNode, NameOwner, }, Direction, SyntaxElement, SyntaxKind::{self, BLOCK_EXPR, BREAK_EXPR, COMMENT, PATH_EXPR, RETURN_EXPR}, SyntaxNode, TextRange, }; use test_utils::mark; use crate::{ assist_context::{AssistContext, Assists}, AssistId, }; // Assist: extract_function // // Extracts selected statements into new function. // // ``` // fn main() { // let n = 1; // $0let m = n + 2; // let k = m + n;$0 // let g = 3; // } // ``` // -> // ``` // fn main() { // let n = 1; // fun_name(n); // let g = 3; // } // // fn $0fun_name(n: i32) { // let m = n + 2; // let k = m + n; // } // ``` pub(crate) fn extract_function(acc: &mut Assists, ctx: &AssistContext) -> Option<()> { if ctx.frange.range.is_empty() { return None; } let node = ctx.covering_element(); if node.kind() == COMMENT { mark::hit!(extract_function_in_comment_is_not_applicable); return None; } let node = match node { syntax::NodeOrToken::Node(n) => n, syntax::NodeOrToken::Token(t) => t.parent(), }; let mut body = None; if node.text_range() == ctx.frange.range { body = FunctionBody::from_whole_node(node.clone()); } if body.is_none() && node.kind() == BLOCK_EXPR { body = FunctionBody::from_range(&node, ctx.frange.range); } if let Some(parent) = node.parent() { if body.is_none() && parent.kind() == BLOCK_EXPR { body = FunctionBody::from_range(&parent, ctx.frange.range); } } if body.is_none() { body = FunctionBody::from_whole_node(node.clone()); } if body.is_none() { body = node.ancestors().find_map(FunctionBody::from_whole_node); } let body = body?; let mut self_param = None; let mut param_pats: Vec<_> = local_variables(&body, &ctx) .into_iter() .map(|node| node.source(ctx.db())) .filter(|src| { src.file_id.original_file(ctx.db()) == ctx.frange.file_id && !body.contains_node(&either_syntax(&src.value)) }) .filter_map(|src| match src.value { Either::Left(pat) => Some(pat), Either::Right(it) => { // we filter self param, as there can only be one self_param = Some(it); None } }) .collect(); deduplicate_params(&mut param_pats); let anchor = if self_param.is_some() { Anchor::Method } else { Anchor::Freestanding }; let insert_after = body.scope_for_fn_insertion(anchor)?; let module = ctx.sema.scope(&insert_after).module()?; let params = param_pats .into_iter() .map(|pat| { let name = pat.name().unwrap().to_string(); let ty = ctx .sema .type_of_pat(&pat.into()) .and_then(|ty| ty.display_source_code(ctx.db(), module.into()).ok()) .unwrap_or_else(|| "()".to_string()); Param { name, ty } }) .collect::>(); let self_param = if let Some(self_param) = self_param { Some(self_param.to_string()) } else { None }; let expr = body.tail_expr(); let ret_ty = match expr { Some(expr) => { // TODO: can we do assist when type is unknown? // We can insert something like `-> ()` let ty = ctx.sema.type_of_expr(&expr)?; Some(ty.display_source_code(ctx.db(), module.into()).ok()?) } None => None, }; let target_range = match &body { FunctionBody::Expr(expr) => expr.syntax().text_range(), FunctionBody::Span { .. } => ctx.frange.range, }; acc.add( AssistId("extract_function", crate::AssistKind::RefactorExtract), "Extract into function", target_range, move |builder| { let fun = Function { name: "fun_name".to_string(), self_param, params, ret_ty, body }; builder.replace(target_range, format_replacement(&fun)); let indent = IndentLevel::from_node(&insert_after); let fn_def = format_function(&fun, indent); let insert_offset = insert_after.text_range().end(); builder.insert(insert_offset, fn_def); }, ) } fn format_replacement(fun: &Function) -> String { let mut buf = String::new(); if fun.self_param.is_some() { format_to!(buf, "self."); } format_to!(buf, "{}(", fun.name); { let mut it = fun.params.iter(); if let Some(param) = it.next() { format_to!(buf, "{}", param.name); } for param in it { format_to!(buf, ", {}", param.name); } } format_to!(buf, ")"); if fun.has_unit_ret() { format_to!(buf, ";"); } buf } struct Function { name: String, self_param: Option, params: Vec, ret_ty: Option, body: FunctionBody, } impl Function { fn has_unit_ret(&self) -> bool { match &self.ret_ty { Some(ty) => ty == "()", None => true, } } } #[derive(Debug)] struct Param { name: String, ty: String, } fn format_function(fun: &Function, indent: IndentLevel) -> String { let mut fn_def = String::new(); format_to!(fn_def, "\n\n{}fn $0{}(", indent, fun.name); { let mut it = fun.params.iter(); if let Some(self_param) = &fun.self_param { format_to!(fn_def, "{}", self_param); } else if let Some(param) = it.next() { format_to!(fn_def, "{}: {}", param.name, param.ty); } for param in it { format_to!(fn_def, ", {}: {}", param.name, param.ty); } } format_to!(fn_def, ")"); if !fun.has_unit_ret() { if let Some(ty) = &fun.ret_ty { format_to!(fn_def, " -> {}", ty); } } format_to!(fn_def, " {{"); match &fun.body { FunctionBody::Expr(expr) => { fn_def.push('\n'); let expr = expr.indent(indent); format_to!(fn_def, "{}{}", indent + 1, expr.syntax()); fn_def.push('\n'); } FunctionBody::Span { elements, leading_indent } => { format_to!(fn_def, "{}", leading_indent); for e in elements { format_to!(fn_def, "{}", e); } if !fn_def.ends_with('\n') { fn_def.push('\n'); } } } format_to!(fn_def, "{}}}", indent); fn_def } #[derive(Debug)] enum FunctionBody { Expr(ast::Expr), Span { elements: Vec, leading_indent: String }, } enum Anchor { Freestanding, Method, } impl FunctionBody { fn from_whole_node(node: SyntaxNode) -> Option { match node.kind() { PATH_EXPR => None, BREAK_EXPR => ast::BreakExpr::cast(node).and_then(|e| e.expr()).map(Self::Expr), RETURN_EXPR => ast::ReturnExpr::cast(node).and_then(|e| e.expr()).map(Self::Expr), BLOCK_EXPR => ast::BlockExpr::cast(node) .filter(|it| it.is_standalone()) .map(Into::into) .map(Self::Expr), _ => ast::Expr::cast(node).map(Self::Expr), } } fn from_range(node: &SyntaxNode, range: TextRange) -> Option { let mut first = node.token_at_offset(range.start()).left_biased()?; let last = node.token_at_offset(range.end()).right_biased()?; let mut leading_indent = String::new(); let leading_trivia = first .siblings_with_tokens(Direction::Prev) .skip(1) .take_while(|e| e.kind() == SyntaxKind::WHITESPACE && e.as_token().is_some()); for e in leading_trivia { let token = e.as_token().unwrap(); let text = token.text(); match text.rfind('\n') { Some(pos) => { leading_indent = text[pos..].to_owned(); break; } None => first = token.clone(), } } let mut elements: Vec<_> = first .siblings_with_tokens(Direction::Next) .take_while(|e| e.as_token() != Some(&last)) .collect(); if !(last.kind() == SyntaxKind::WHITESPACE && last.text().lines().count() <= 2) { elements.push(last.into()); } Some(FunctionBody::Span { elements, leading_indent }) } fn tail_expr(&self) -> Option { match &self { FunctionBody::Expr(expr) => Some(expr.clone()), FunctionBody::Span { elements, .. } => { elements.iter().rev().find_map(|e| e.as_node()).cloned().and_then(ast::Expr::cast) } } } fn scope_for_fn_insertion(&self, anchor: Anchor) -> Option { match self { FunctionBody::Expr(e) => scope_for_fn_insertion(e.syntax(), anchor), FunctionBody::Span { elements, .. } => { let node = elements.iter().find_map(|e| e.as_node())?; scope_for_fn_insertion(&node, anchor) } } } fn descendants(&self) -> impl Iterator + '_ { match self { FunctionBody::Expr(expr) => Either::Right(expr.syntax().descendants()), FunctionBody::Span { elements, .. } => Either::Left( elements .iter() .filter_map(SyntaxElement::as_node) .flat_map(SyntaxNode::descendants), ), } } fn contains_node(&self, node: &SyntaxNode) -> bool { fn is_node(body: &FunctionBody, n: &SyntaxNode) -> bool { match body { FunctionBody::Expr(expr) => n == expr.syntax(), FunctionBody::Span { elements, .. } => { // FIXME: can it be quadratic? elements.iter().filter_map(SyntaxElement::as_node).any(|e| e == n) } } } node.ancestors().any(|a| is_node(self, &a)) } } fn scope_for_fn_insertion(node: &SyntaxNode, anchor: Anchor) -> Option { let mut ancestors = node.ancestors().peekable(); let mut last_ancestor = None; while let Some(next_ancestor) = ancestors.next() { match next_ancestor.kind() { SyntaxKind::SOURCE_FILE => break, SyntaxKind::ITEM_LIST => { if !matches!(anchor, Anchor::Freestanding) { continue; } if ancestors.peek().map(SyntaxNode::kind) == Some(SyntaxKind::MODULE) { break; } } SyntaxKind::ASSOC_ITEM_LIST => { if !matches!(anchor, Anchor::Method) { continue; } if ancestors.peek().map(SyntaxNode::kind) == Some(SyntaxKind::IMPL) { break; } } _ => {} } last_ancestor = Some(next_ancestor); } last_ancestor } fn deduplicate_params(params: &mut Vec) { let mut seen_params = FxHashSet::default(); params.retain(|p| seen_params.insert(p.clone())); } fn either_syntax(value: &Either) -> &SyntaxNode { match value { Either::Left(pat) => pat.syntax(), Either::Right(it) => it.syntax(), } } /// Returns a vector of local variables that are refferenced in `body` fn local_variables(body: &FunctionBody, ctx: &AssistContext) -> Vec { body.descendants() .filter_map(ast::NameRef::cast) .filter_map(|name_ref| NameRefClass::classify(&ctx.sema, &name_ref)) .map(|name_kind| name_kind.referenced(ctx.db())) .filter_map(|definition| match definition { Definition::Local(local) => Some(local), _ => None, }) .collect() } #[cfg(test)] mod tests { use crate::tests::{check_assist, check_assist_not_applicable}; use super::*; #[test] fn no_args_from_binary_expr() { check_assist( extract_function, r#" fn foo() { foo($01 + 1$0); }"#, r#" fn foo() { foo(fun_name()); } fn $0fun_name() -> i32 { 1 + 1 }"#, ); } #[test] fn no_args_from_binary_expr_in_module() { check_assist( extract_function, r#" mod bar { fn foo() { foo($01 + 1$0); } }"#, r#" mod bar { fn foo() { foo(fun_name()); } fn $0fun_name() -> i32 { 1 + 1 } }"#, ); } #[test] fn no_args_from_binary_expr_indented() { check_assist( extract_function, r#" fn foo() { $0{ 1 + 1 }$0; }"#, r#" fn foo() { fun_name(); } fn $0fun_name() -> i32 { { 1 + 1 } }"#, ); } #[test] fn no_args_from_stmt_with_last_expr() { check_assist( extract_function, r#" fn foo() -> i32 { let k = 1; $0let m = 1; m + 1$0 }"#, r#" fn foo() -> i32 { let k = 1; fun_name() } fn $0fun_name() -> i32 { let m = 1; m + 1 }"#, ); } #[test] fn no_args_from_stmt_unit() { check_assist( extract_function, r#" fn foo() { let k = 3; $0let m = 1; let n = m + 1;$0 let g = 5; }"#, r#" fn foo() { let k = 3; fun_name(); let g = 5; } fn $0fun_name() { let m = 1; let n = m + 1; }"#, ); } #[test] fn no_args_from_loop_unit() { check_assist( extract_function, r#" fn foo() { $0loop { let m = 1; }$0 }"#, r#" fn foo() { fun_name() } fn $0fun_name() -> ! { loop { let m = 1; } }"#, ); } #[test] fn no_args_from_loop_with_return() { check_assist( extract_function, r#" fn foo() { let v = $0loop { let m = 1; break m; }$0; }"#, r#" fn foo() { let v = fun_name(); } fn $0fun_name() -> i32 { loop { let m = 1; break m; } }"#, ); } #[test] fn no_args_from_match() { check_assist( extract_function, r#" fn foo() { let v: i32 = $0match Some(1) { Some(x) => x, None => 0, }$0; }"#, r#" fn foo() { let v: i32 = fun_name(); } fn $0fun_name() -> i32 { match Some(1) { Some(x) => x, None => 0, } }"#, ); } #[test] fn argument_form_expr() { check_assist( extract_function, r" fn foo() -> u32 { let n = 2; $0n+2$0 }", r" fn foo() -> u32 { let n = 2; fun_name(n) } fn $0fun_name(n: u32) -> u32 { n+2 }", ) } #[test] fn argument_used_twice_form_expr() { check_assist( extract_function, r" fn foo() -> u32 { let n = 2; $0n+n$0 }", r" fn foo() -> u32 { let n = 2; fun_name(n) } fn $0fun_name(n: u32) -> u32 { n+n }", ) } #[test] fn two_arguments_form_expr() { check_assist( extract_function, r" fn foo() -> u32 { let n = 2; let m = 3; $0n+n*m$0 }", r" fn foo() -> u32 { let n = 2; let m = 3; fun_name(n, m) } fn $0fun_name(n: u32, m: u32) -> u32 { n+n*m }", ) } #[test] fn argument_and_locals() { check_assist( extract_function, r" fn foo() -> u32 { let n = 2; $0let m = 1; n + m$0 }", r" fn foo() -> u32 { let n = 2; fun_name(n) } fn $0fun_name(n: u32) -> u32 { let m = 1; n + m }", ) } #[test] fn in_comment_is_not_applicable() { mark::check!(extract_function_in_comment_is_not_applicable); check_assist_not_applicable(extract_function, r"fn main() { 1 + /* $0comment$0 */ 1; }"); } #[test] fn part_of_expr_stmt() { check_assist( extract_function, " fn foo() { $01$0 + 1; }", " fn foo() { fun_name() + 1; } fn $0fun_name() -> i32 { 1 }", ); } #[test] fn function_expr() { check_assist( extract_function, r#" fn foo() { $0bar(1 + 1)$0 }"#, r#" fn foo() { fun_name(); } fn $0fun_name() { bar(1 + 1) }"#, ) } #[test] fn extract_from_nested() { check_assist( extract_function, r" fn main() { let x = true; let tuple = match x { true => ($02 + 2$0, true) _ => (0, false) }; }", r" fn main() { let x = true; let tuple = match x { true => (fun_name(), true) _ => (0, false) }; } fn $0fun_name() -> i32 { 2 + 2 }", ); } #[test] fn param_from_closure() { check_assist( extract_function, r" fn main() { let lambda = |x: u32| $0x * 2$0; }", r" fn main() { let lambda = |x: u32| fun_name(x); } fn $0fun_name(x: u32) -> u32 { x * 2 }", ); } #[test] fn extract_return_stmt() { check_assist( extract_function, r" fn foo() -> u32 { $0return 2 + 2$0; }", r" fn foo() -> u32 { return fun_name(); } fn $0fun_name() -> u32 { 2 + 2 }", ); } #[test] fn does_not_add_extra_whitespace() { check_assist( extract_function, r" fn foo() -> u32 { $0return 2 + 2$0; }", r" fn foo() -> u32 { return fun_name(); } fn $0fun_name() -> u32 { 2 + 2 }", ); } #[test] fn break_stmt() { check_assist( extract_function, r" fn main() { let result = loop { $0break 2 + 2$0; }; }", r" fn main() { let result = loop { break fun_name(); }; } fn $0fun_name() -> i32 { 2 + 2 }", ); } #[test] fn extract_cast() { check_assist( extract_function, r" fn main() { let v = $00f32 as u32$0; }", r" fn main() { let v = fun_name(); } fn $0fun_name() -> u32 { 0f32 as u32 }", ); } #[test] fn return_not_applicable() { check_assist_not_applicable(extract_function, r"fn foo() { $0return$0; } "); } #[test] fn method_to_freestanding() { check_assist( extract_function, r" struct S; impl S { fn foo(&self) -> i32 { $01+1$0 } }", r" struct S; impl S { fn foo(&self) -> i32 { fun_name() } } fn $0fun_name() -> i32 { 1+1 }", ); } #[test] fn method_with_reference() { check_assist( extract_function, r" struct S { f: i32 }; impl S { fn foo(&self) -> i32 { $01+self.f$0 } }", r" struct S { f: i32 }; impl S { fn foo(&self) -> i32 { self.fun_name() } fn $0fun_name(&self) -> i32 { 1+self.f } }", ); } #[test] fn method_with_mut() { check_assist( extract_function, r" struct S { f: i32 }; impl S { fn foo(&mut self) { $0self.f += 1;$0 } }", r" struct S { f: i32 }; impl S { fn foo(&mut self) { self.fun_name(); } fn $0fun_name(&mut self) { self.f += 1; } }", ); } // it is unclear if this is wanted behaviour // and how this behavour can be implemented #[ignore] #[test] fn method_with_mut_downgrade_to_shared() { check_assist( extract_function, r" struct S { f: i32 }; impl S { fn foo(&mut self) -> i32 { $01+self.f$0 } }", r" struct S { f: i32 }; impl S { fn foo(&mut self) -> i32 { self.fun_name() } fn $0fun_name(&self) -> i32 { 1+self.f } }", ); } }