//! Assorted functions shared by several assists. use std::ops; use hir::{Adt, HasSource}; use ide_db::{helpers::SnippetCap, RootDatabase}; use itertools::Itertools; use stdx::format_to; use syntax::{ ast::edit::AstNodeEdit, ast::AttrsOwner, ast::NameOwner, ast::{self, edit, make, ArgListOwner, GenericParamsOwner}, AstNode, Direction, SmolStr, SyntaxKind::*, SyntaxNode, TextSize, T, }; use crate::{ assist_context::AssistContext, ast_transform::{self, AstTransform, QualifyPaths, SubstituteTypeParams}, }; pub(crate) fn unwrap_trivial_block(block: ast::BlockExpr) -> ast::Expr { extract_trivial_expression(&block) .filter(|expr| !expr.syntax().text().contains_char('\n')) .unwrap_or_else(|| block.into()) } pub fn extract_trivial_expression(block: &ast::BlockExpr) -> Option { let has_anything_else = |thing: &SyntaxNode| -> bool { let mut non_trivial_children = block.syntax().children_with_tokens().filter(|it| match it.kind() { WHITESPACE | T!['{'] | T!['}'] => false, _ => it.as_node() != Some(thing), }); non_trivial_children.next().is_some() }; if let Some(expr) = block.tail_expr() { if has_anything_else(expr.syntax()) { return None; } return Some(expr); } // Unwrap `{ continue; }` let (stmt,) = block.statements().next_tuple()?; if let ast::Stmt::ExprStmt(expr_stmt) = stmt { if has_anything_else(expr_stmt.syntax()) { return None; } let expr = expr_stmt.expr()?; match expr.syntax().kind() { CONTINUE_EXPR | BREAK_EXPR | RETURN_EXPR => return Some(expr), _ => (), } } None } /// This is a method with a heuristics to support test methods annotated with custom test annotations, such as /// `#[test_case(...)]`, `#[tokio::test]` and similar. /// Also a regular `#[test]` annotation is supported. /// /// It may produce false positives, for example, `#[wasm_bindgen_test]` requires a different command to run the test, /// but it's better than not to have the runnables for the tests at all. pub fn test_related_attribute(fn_def: &ast::Fn) -> Option { fn_def.attrs().find_map(|attr| { let path = attr.path()?; if path.syntax().text().to_string().contains("test") { Some(attr) } else { None } }) } #[derive(Copy, Clone, PartialEq)] pub enum DefaultMethods { Only, No, } pub fn filter_assoc_items( db: &RootDatabase, items: &[hir::AssocItem], default_methods: DefaultMethods, ) -> Vec { fn has_def_name(item: &ast::AssocItem) -> bool { match item { ast::AssocItem::Fn(def) => def.name(), ast::AssocItem::TypeAlias(def) => def.name(), ast::AssocItem::Const(def) => def.name(), ast::AssocItem::MacroCall(_) => None, } .is_some() } items .iter() // Note: This throws away items with no source. .filter_map(|i| { let item = match i { hir::AssocItem::Function(i) => ast::AssocItem::Fn(i.source(db)?.value), hir::AssocItem::TypeAlias(i) => ast::AssocItem::TypeAlias(i.source(db)?.value), hir::AssocItem::Const(i) => ast::AssocItem::Const(i.source(db)?.value), }; Some(item) }) .filter(has_def_name) .filter(|it| match it { ast::AssocItem::Fn(def) => matches!( (default_methods, def.body()), (DefaultMethods::Only, Some(_)) | (DefaultMethods::No, None) ), _ => default_methods == DefaultMethods::No, }) .collect::>() } pub fn add_trait_assoc_items_to_impl( sema: &hir::Semantics, items: Vec, trait_: hir::Trait, impl_def: ast::Impl, target_scope: hir::SemanticsScope, ) -> (ast::Impl, ast::AssocItem) { let impl_item_list = impl_def.assoc_item_list().unwrap_or_else(make::assoc_item_list); let n_existing_items = impl_item_list.assoc_items().count(); let source_scope = sema.scope_for_def(trait_); let ast_transform = QualifyPaths::new(&target_scope, &source_scope) .or(SubstituteTypeParams::for_trait_impl(&source_scope, trait_, impl_def.clone())); let items = items .into_iter() .map(|it| ast_transform::apply(&*ast_transform, it)) .map(|it| match it { ast::AssocItem::Fn(def) => ast::AssocItem::Fn(add_body(def)), ast::AssocItem::TypeAlias(def) => ast::AssocItem::TypeAlias(def.remove_bounds()), _ => it, }) .map(|it| edit::remove_attrs_and_docs(&it)); let new_impl_item_list = impl_item_list.append_items(items); let new_impl_def = impl_def.with_assoc_item_list(new_impl_item_list); let first_new_item = new_impl_def.assoc_item_list().unwrap().assoc_items().nth(n_existing_items).unwrap(); return (new_impl_def, first_new_item); fn add_body(fn_def: ast::Fn) -> ast::Fn { match fn_def.body() { Some(_) => fn_def, None => { let body = make::block_expr(None, Some(make::expr_todo())).indent(edit::IndentLevel(1)); fn_def.with_body(body) } } } } #[derive(Clone, Copy, Debug)] pub(crate) enum Cursor<'a> { Replace(&'a SyntaxNode), Before(&'a SyntaxNode), } impl<'a> Cursor<'a> { fn node(self) -> &'a SyntaxNode { match self { Cursor::Replace(node) | Cursor::Before(node) => node, } } } pub(crate) fn render_snippet(_cap: SnippetCap, node: &SyntaxNode, cursor: Cursor) -> String { assert!(cursor.node().ancestors().any(|it| it == *node)); let range = cursor.node().text_range() - node.text_range().start(); let range: ops::Range = range.into(); let mut placeholder = cursor.node().to_string(); escape(&mut placeholder); let tab_stop = match cursor { Cursor::Replace(placeholder) => format!("${{0:{}}}", placeholder), Cursor::Before(placeholder) => format!("$0{}", placeholder), }; let mut buf = node.to_string(); buf.replace_range(range, &tab_stop); return buf; fn escape(buf: &mut String) { stdx::replace(buf, '{', r"\{"); stdx::replace(buf, '}', r"\}"); stdx::replace(buf, '$', r"\$"); } } pub(crate) fn vis_offset(node: &SyntaxNode) -> TextSize { node.children_with_tokens() .find(|it| !matches!(it.kind(), WHITESPACE | COMMENT | ATTR)) .map(|it| it.text_range().start()) .unwrap_or_else(|| node.text_range().start()) } pub(crate) fn invert_boolean_expression(expr: ast::Expr) -> ast::Expr { if let Some(expr) = invert_special_case(&expr) { return expr; } make::expr_prefix(T![!], expr) } fn invert_special_case(expr: &ast::Expr) -> Option { match expr { ast::Expr::BinExpr(bin) => match bin.op_kind()? { ast::BinOp::NegatedEqualityTest => bin.replace_op(T![==]).map(|it| it.into()), ast::BinOp::EqualityTest => bin.replace_op(T![!=]).map(|it| it.into()), // Parenthesize composite boolean expressions before prefixing `!` ast::BinOp::BooleanAnd | ast::BinOp::BooleanOr => { Some(make::expr_prefix(T![!], make::expr_paren(expr.clone()))) } _ => None, }, ast::Expr::MethodCallExpr(mce) => { let receiver = mce.receiver()?; let method = mce.name_ref()?; let arg_list = mce.arg_list()?; let method = match method.text() { "is_some" => "is_none", "is_none" => "is_some", "is_ok" => "is_err", "is_err" => "is_ok", _ => return None, }; Some(make::expr_method_call(receiver, method, arg_list)) } ast::Expr::PrefixExpr(pe) if pe.op_kind()? == ast::PrefixOp::Not => { if let ast::Expr::ParenExpr(parexpr) = pe.expr()? { parexpr.expr() } else { pe.expr() } } // FIXME: // ast::Expr::Literal(true | false ) _ => None, } } pub(crate) fn next_prev() -> impl Iterator { [Direction::Next, Direction::Prev].iter().copied() } pub(crate) fn does_pat_match_variant(pat: &ast::Pat, var: &ast::Pat) -> bool { let first_node_text = |pat: &ast::Pat| pat.syntax().first_child().map(|node| node.text()); let pat_head = match pat { ast::Pat::IdentPat(bind_pat) => { if let Some(p) = bind_pat.pat() { first_node_text(&p) } else { return pat.syntax().text() == var.syntax().text(); } } pat => first_node_text(pat), }; let var_head = first_node_text(var); pat_head == var_head } // Uses a syntax-driven approach to find any impl blocks for the struct that // exist within the module/file // // Returns `None` if we've found an existing fn // // FIXME: change the new fn checking to a more semantic approach when that's more // viable (e.g. we process proc macros, etc) // FIXME: this partially overlaps with `find_impl_block_*` pub(crate) fn find_struct_impl( ctx: &AssistContext, strukt: &ast::Adt, name: &str, ) -> Option> { let db = ctx.db(); let module = strukt.syntax().ancestors().find(|node| { ast::Module::can_cast(node.kind()) || ast::SourceFile::can_cast(node.kind()) })?; let struct_def = match strukt { ast::Adt::Enum(e) => Adt::Enum(ctx.sema.to_def(e)?), ast::Adt::Struct(s) => Adt::Struct(ctx.sema.to_def(s)?), ast::Adt::Union(u) => Adt::Union(ctx.sema.to_def(u)?), }; let block = module.descendants().filter_map(ast::Impl::cast).find_map(|impl_blk| { let blk = ctx.sema.to_def(&impl_blk)?; // FIXME: handle e.g. `struct S; impl S {}` // (we currently use the wrong type parameter) // also we wouldn't want to use e.g. `impl S` let same_ty = match blk.target_ty(db).as_adt() { Some(def) => def == struct_def, None => false, }; let not_trait_impl = blk.target_trait(db).is_none(); if !(same_ty && not_trait_impl) { None } else { Some(impl_blk) } }); if let Some(ref impl_blk) = block { if has_fn(impl_blk, name) { return None; } } Some(block) } fn has_fn(imp: &ast::Impl, rhs_name: &str) -> bool { if let Some(il) = imp.assoc_item_list() { for item in il.assoc_items() { if let ast::AssocItem::Fn(f) = item { if let Some(name) = f.name() { if name.text().eq_ignore_ascii_case(rhs_name) { return true; } } } } } false } /// Find the start of the `impl` block for the given `ast::Impl`. // // FIXME: this partially overlaps with `find_struct_impl` pub(crate) fn find_impl_block_start(impl_def: ast::Impl, buf: &mut String) -> Option { buf.push('\n'); let start = impl_def.assoc_item_list().and_then(|it| it.l_curly_token())?.text_range().end(); Some(start) } /// Find the end of the `impl` block for the given `ast::Impl`. // // FIXME: this partially overlaps with `find_struct_impl` pub(crate) fn find_impl_block_end(impl_def: ast::Impl, buf: &mut String) -> Option { buf.push('\n'); let end = impl_def .assoc_item_list() .and_then(|it| it.r_curly_token())? .prev_sibling_or_token()? .text_range() .end(); Some(end) } // Generates the surrounding `impl Type { }` including type and lifetime // parameters pub(crate) fn generate_impl_text(adt: &ast::Adt, code: &str) -> String { generate_impl_text_inner(adt, None, code) } // Generates the surrounding `impl for Type { }` including type // and lifetime parameters pub(crate) fn generate_trait_impl_text(adt: &ast::Adt, trait_text: &str, code: &str) -> String { generate_impl_text_inner(adt, Some(trait_text), code) } fn generate_impl_text_inner(adt: &ast::Adt, trait_text: Option<&str>, code: &str) -> String { let type_params = adt.generic_param_list(); let mut buf = String::with_capacity(code.len()); buf.push_str("\n\n"); adt .attrs() .filter(|attr| { attr.as_simple_call().map(|(name, _arg)| name == "cfg").unwrap_or(false) }) .for_each(|attr| buf.push_str(format!("{}\n", attr.to_string()).as_str())); buf.push_str("impl"); if let Some(type_params) = &type_params { format_to!(buf, "{}", type_params.syntax()); } buf.push(' '); if let Some(trait_text) = trait_text { buf.push_str(trait_text); buf.push_str(" for "); } buf.push_str(adt.name().unwrap().text()); if let Some(type_params) = type_params { let lifetime_params = type_params .lifetime_params() .filter_map(|it| it.lifetime()) .map(|it| SmolStr::from(it.text())); let type_params = type_params.type_params().filter_map(|it| it.name()).map(|it| SmolStr::from(it.text())); format_to!(buf, "<{}>", lifetime_params.chain(type_params).format(", ")) } format_to!(buf, " {{\n{}\n}}", code); buf }