//! Assorted functions shared by several assists.
pub(crate) mod insert_use;

use std::{iter, ops};

use hir::{Adt, Crate, Enum, Module, ScopeDef, Semantics, Trait, Type};
use ide_db::RootDatabase;
use itertools::Itertools;
use rustc_hash::FxHashSet;
use syntax::{
    ast::{self, make, ArgListOwner, NameOwner},
    AstNode, Direction,
    SyntaxKind::*,
    SyntaxNode, TextSize, T,
};

use crate::assist_config::SnippetCap;

pub use insert_use::MergeBehaviour;
pub(crate) use insert_use::{insert_use, ImportScope};

pub fn mod_path_to_ast(path: &hir::ModPath) -> ast::Path {
    let mut segments = Vec::new();
    let mut is_abs = false;
    match path.kind {
        hir::PathKind::Plain => {}
        hir::PathKind::Super(0) => segments.push(make::path_segment_self()),
        hir::PathKind::Super(n) => segments.extend((0..n).map(|_| make::path_segment_super())),
        hir::PathKind::DollarCrate(_) | hir::PathKind::Crate => {
            segments.push(make::path_segment_crate())
        }
        hir::PathKind::Abs => is_abs = true,
    }

    segments.extend(
        path.segments
            .iter()
            .map(|segment| make::path_segment(make::name_ref(&segment.to_string()))),
    );
    make::path_from_segments(segments, is_abs)
}

pub(crate) fn unwrap_trivial_block(block: ast::BlockExpr) -> ast::Expr {
    extract_trivial_expression(&block)
        .filter(|expr| !expr.syntax().text().contains_char('\n'))
        .unwrap_or_else(|| block.into())
}

pub fn extract_trivial_expression(block: &ast::BlockExpr) -> Option<ast::Expr> {
    let has_anything_else = |thing: &SyntaxNode| -> bool {
        let mut non_trivial_children =
            block.syntax().children_with_tokens().filter(|it| match it.kind() {
                WHITESPACE | T!['{'] | T!['}'] => false,
                _ => it.as_node() != Some(thing),
            });
        non_trivial_children.next().is_some()
    };

    if let Some(expr) = block.expr() {
        if has_anything_else(expr.syntax()) {
            return None;
        }
        return Some(expr);
    }
    // Unwrap `{ continue; }`
    let (stmt,) = block.statements().next_tuple()?;
    if let ast::Stmt::ExprStmt(expr_stmt) = stmt {
        if has_anything_else(expr_stmt.syntax()) {
            return None;
        }
        let expr = expr_stmt.expr()?;
        match expr.syntax().kind() {
            CONTINUE_EXPR | BREAK_EXPR | RETURN_EXPR => return Some(expr),
            _ => (),
        }
    }
    None
}

#[derive(Clone, Copy, Debug)]
pub(crate) enum Cursor<'a> {
    Replace(&'a SyntaxNode),
    Before(&'a SyntaxNode),
}

impl<'a> Cursor<'a> {
    fn node(self) -> &'a SyntaxNode {
        match self {
            Cursor::Replace(node) | Cursor::Before(node) => node,
        }
    }
}

pub(crate) fn render_snippet(_cap: SnippetCap, node: &SyntaxNode, cursor: Cursor) -> String {
    assert!(cursor.node().ancestors().any(|it| it == *node));
    let range = cursor.node().text_range() - node.text_range().start();
    let range: ops::Range<usize> = range.into();

    let mut placeholder = cursor.node().to_string();
    escape(&mut placeholder);
    let tab_stop = match cursor {
        Cursor::Replace(placeholder) => format!("${{0:{}}}", placeholder),
        Cursor::Before(placeholder) => format!("$0{}", placeholder),
    };

    let mut buf = node.to_string();
    buf.replace_range(range, &tab_stop);
    return buf;

    fn escape(buf: &mut String) {
        stdx::replace(buf, '{', r"\{");
        stdx::replace(buf, '}', r"\}");
        stdx::replace(buf, '$', r"\$");
    }
}

pub fn get_missing_assoc_items(
    sema: &Semantics<RootDatabase>,
    impl_def: &ast::Impl,
) -> Vec<hir::AssocItem> {
    // Names must be unique between constants and functions. However, type aliases
    // may share the same name as a function or constant.
    let mut impl_fns_consts = FxHashSet::default();
    let mut impl_type = FxHashSet::default();

    if let Some(item_list) = impl_def.assoc_item_list() {
        for item in item_list.assoc_items() {
            match item {
                ast::AssocItem::Fn(f) => {
                    if let Some(n) = f.name() {
                        impl_fns_consts.insert(n.syntax().to_string());
                    }
                }

                ast::AssocItem::TypeAlias(t) => {
                    if let Some(n) = t.name() {
                        impl_type.insert(n.syntax().to_string());
                    }
                }

                ast::AssocItem::Const(c) => {
                    if let Some(n) = c.name() {
                        impl_fns_consts.insert(n.syntax().to_string());
                    }
                }
                ast::AssocItem::MacroCall(_) => (),
            }
        }
    }

    resolve_target_trait(sema, impl_def).map_or(vec![], |target_trait| {
        target_trait
            .items(sema.db)
            .iter()
            .filter(|i| match i {
                hir::AssocItem::Function(f) => {
                    !impl_fns_consts.contains(&f.name(sema.db).to_string())
                }
                hir::AssocItem::TypeAlias(t) => !impl_type.contains(&t.name(sema.db).to_string()),
                hir::AssocItem::Const(c) => c
                    .name(sema.db)
                    .map(|n| !impl_fns_consts.contains(&n.to_string()))
                    .unwrap_or_default(),
            })
            .cloned()
            .collect()
    })
}

pub(crate) fn resolve_target_trait(
    sema: &Semantics<RootDatabase>,
    impl_def: &ast::Impl,
) -> Option<hir::Trait> {
    let ast_path =
        impl_def.trait_().map(|it| it.syntax().clone()).and_then(ast::PathType::cast)?.path()?;

    match sema.resolve_path(&ast_path) {
        Some(hir::PathResolution::Def(hir::ModuleDef::Trait(def))) => Some(def),
        _ => None,
    }
}

pub(crate) fn vis_offset(node: &SyntaxNode) -> TextSize {
    node.children_with_tokens()
        .find(|it| !matches!(it.kind(), WHITESPACE | COMMENT | ATTR))
        .map(|it| it.text_range().start())
        .unwrap_or_else(|| node.text_range().start())
}

pub(crate) fn invert_boolean_expression(expr: ast::Expr) -> ast::Expr {
    if let Some(expr) = invert_special_case(&expr) {
        return expr;
    }
    make::expr_prefix(T![!], expr)
}

fn invert_special_case(expr: &ast::Expr) -> Option<ast::Expr> {
    match expr {
        ast::Expr::BinExpr(bin) => match bin.op_kind()? {
            ast::BinOp::NegatedEqualityTest => bin.replace_op(T![==]).map(|it| it.into()),
            ast::BinOp::EqualityTest => bin.replace_op(T![!=]).map(|it| it.into()),
            _ => None,
        },
        ast::Expr::MethodCallExpr(mce) => {
            let receiver = mce.receiver()?;
            let method = mce.name_ref()?;
            let arg_list = mce.arg_list()?;

            let method = match method.text().as_str() {
                "is_some" => "is_none",
                "is_none" => "is_some",
                "is_ok" => "is_err",
                "is_err" => "is_ok",
                _ => return None,
            };
            Some(make::expr_method_call(receiver, method, arg_list))
        }
        ast::Expr::PrefixExpr(pe) if pe.op_kind()? == ast::PrefixOp::Not => pe.expr(),
        // FIXME:
        // ast::Expr::Literal(true | false )
        _ => None,
    }
}

#[derive(Clone, Copy)]
pub enum TryEnum {
    Result,
    Option,
}

impl TryEnum {
    const ALL: [TryEnum; 2] = [TryEnum::Option, TryEnum::Result];

    pub fn from_ty(sema: &Semantics<RootDatabase>, ty: &Type) -> Option<TryEnum> {
        let enum_ = match ty.as_adt() {
            Some(Adt::Enum(it)) => it,
            _ => return None,
        };
        TryEnum::ALL.iter().find_map(|&var| {
            if &enum_.name(sema.db).to_string() == var.type_name() {
                return Some(var);
            }
            None
        })
    }

    pub(crate) fn happy_case(self) -> &'static str {
        match self {
            TryEnum::Result => "Ok",
            TryEnum::Option => "Some",
        }
    }

    pub(crate) fn sad_pattern(self) -> ast::Pat {
        match self {
            TryEnum::Result => make::tuple_struct_pat(
                make::path_unqualified(make::path_segment(make::name_ref("Err"))),
                iter::once(make::wildcard_pat().into()),
            )
            .into(),
            TryEnum::Option => make::ident_pat(make::name("None")).into(),
        }
    }

    fn type_name(self) -> &'static str {
        match self {
            TryEnum::Result => "Result",
            TryEnum::Option => "Option",
        }
    }
}

/// Helps with finding well-know things inside the standard library. This is
/// somewhat similar to the known paths infra inside hir, but it different; We
/// want to make sure that IDE specific paths don't become interesting inside
/// the compiler itself as well.
pub struct FamousDefs<'a, 'b>(pub &'a Semantics<'b, RootDatabase>, pub Crate);

#[allow(non_snake_case)]
impl FamousDefs<'_, '_> {
    pub const FIXTURE: &'static str = r#"//- /libcore.rs crate:core
pub mod convert {
    pub trait From<T> {
        fn from(t: T) -> Self;
    }
}

pub mod iter {
    pub use self::traits::{collect::IntoIterator, iterator::Iterator};
    mod traits {
        pub(crate) mod iterator {
            use crate::option::Option;
            pub trait Iterator {
                type Item;
                fn next(&mut self) -> Option<Self::Item>;
                fn by_ref(&mut self) -> &mut Self {
                    self
                }
                fn take(self, n: usize) -> crate::iter::Take<Self> {
                    crate::iter::Take { inner: self }
                }
            }

            impl<I: Iterator> Iterator for &mut I {
                type Item = I::Item;
                fn next(&mut self) -> Option<I::Item> {
                    (**self).next()
                }
            }
        }
        pub(crate) mod collect {
            pub trait IntoIterator {
                type Item;
            }
        }
    }

    pub use self::sources::*;
    pub(crate) mod sources {
        use super::Iterator;
        use crate::option::Option::{self, *};
        pub struct Repeat<A> {
            element: A,
        }

        pub fn repeat<T>(elt: T) -> Repeat<T> {
            Repeat { element: elt }
        }

        impl<A> Iterator for Repeat<A> {
            type Item = A;

            fn next(&mut self) -> Option<A> {
                None
            }
        }
    }

    pub use self::adapters::*;
    pub(crate) mod adapters {
        use super::Iterator;
        use crate::option::Option::{self, *};
        pub struct Take<I> { pub(crate) inner: I }
        impl<I> Iterator for Take<I> where I: Iterator {
            type Item = <I as Iterator>::Item;
            fn next(&mut self) -> Option<<I as Iterator>::Item> {
                None
            }
        }
    }
}

pub mod option {
    pub enum Option<T> { None, Some(T)}
}

pub mod prelude {
    pub use crate::{convert::From, iter::{IntoIterator, Iterator}, option::Option::{self, *}};
}
#[prelude_import]
pub use prelude::*;
"#;

    pub(crate) fn core_convert_From(&self) -> Option<Trait> {
        self.find_trait("core:convert:From")
    }

    pub(crate) fn core_option_Option(&self) -> Option<Enum> {
        self.find_enum("core:option:Option")
    }

    pub fn core_iter_Iterator(&self) -> Option<Trait> {
        self.find_trait("core:iter:traits:iterator:Iterator")
    }

    pub fn core_iter(&self) -> Option<Module> {
        self.find_module("core:iter")
    }

    fn find_trait(&self, path: &str) -> Option<Trait> {
        match self.find_def(path)? {
            hir::ScopeDef::ModuleDef(hir::ModuleDef::Trait(it)) => Some(it),
            _ => None,
        }
    }

    fn find_enum(&self, path: &str) -> Option<Enum> {
        match self.find_def(path)? {
            hir::ScopeDef::ModuleDef(hir::ModuleDef::Adt(hir::Adt::Enum(it))) => Some(it),
            _ => None,
        }
    }

    fn find_module(&self, path: &str) -> Option<Module> {
        match self.find_def(path)? {
            hir::ScopeDef::ModuleDef(hir::ModuleDef::Module(it)) => Some(it),
            _ => None,
        }
    }

    fn find_def(&self, path: &str) -> Option<ScopeDef> {
        let db = self.0.db;
        let mut path = path.split(':');
        let trait_ = path.next_back()?;
        let std_crate = path.next()?;
        let std_crate = if self
            .1
            .declaration_name(db)
            .map(|name| name.to_string() == std_crate)
            .unwrap_or(false)
        {
            self.1
        } else {
            self.1.dependencies(db).into_iter().find(|dep| dep.name.to_string() == std_crate)?.krate
        };
        let mut module = std_crate.root_module(db);
        for segment in path {
            module = module.children(db).find_map(|child| {
                let name = child.name(db)?;
                if name.to_string() == segment {
                    Some(child)
                } else {
                    None
                }
            })?;
        }
        let def =
            module.scope(db, None).into_iter().find(|(name, _def)| name.to_string() == trait_)?.1;
        Some(def)
    }
}

pub(crate) fn next_prev() -> impl Iterator<Item = Direction> {
    [Direction::Next, Direction::Prev].iter().copied()
}