//! Disjunctive Normal Form construction. //! //! Algorithm from <https://www.cs.drexel.edu/~jjohnson/2015-16/fall/CS270/Lectures/3/dnf.pdf>, //! which would have been much easier to read if it used pattern matching. It's also missing the //! entire "distribute ANDs over ORs" part, which is not trivial. Oh well. //! //! This is currently both messy and inefficient. Feel free to improve, there are unit tests. use std::fmt; use rustc_hash::FxHashSet; use crate::{CfgAtom, CfgDiff, CfgExpr, CfgOptions, InactiveReason}; /// A `#[cfg]` directive in Disjunctive Normal Form (DNF). pub struct DnfExpr { conjunctions: Vec<Conjunction>, } struct Conjunction { literals: Vec<Literal>, } struct Literal { negate: bool, var: Option<CfgAtom>, // None = Invalid } impl DnfExpr { pub fn new(expr: CfgExpr) -> Self { let builder = Builder { expr: DnfExpr { conjunctions: Vec::new() } }; builder.lower(expr) } /// Computes a list of present or absent atoms in `opts` that cause this expression to evaluate /// to `false`. /// /// Note that flipping a subset of these atoms might be sufficient to make the whole expression /// evaluate to `true`. For that, see `compute_enable_hints`. /// /// Returns `None` when `self` is already true, or contains errors. pub fn why_inactive(&self, opts: &CfgOptions) -> Option<InactiveReason> { let mut res = InactiveReason { enabled: Vec::new(), disabled: Vec::new() }; for conj in &self.conjunctions { let mut conj_is_true = true; for lit in &conj.literals { let atom = lit.var.as_ref()?; let enabled = opts.enabled.contains(atom); if lit.negate == enabled { // Literal is false, but needs to be true for this conjunction. conj_is_true = false; if enabled { res.enabled.push(atom.clone()); } else { res.disabled.push(atom.clone()); } } } if conj_is_true { // This expression is not actually inactive. return None; } } res.enabled.sort_unstable(); res.enabled.dedup(); res.disabled.sort_unstable(); res.disabled.dedup(); Some(res) } /// Returns `CfgDiff` objects that would enable this directive if applied to `opts`. pub fn compute_enable_hints<'a>( &'a self, opts: &'a CfgOptions, ) -> impl Iterator<Item = CfgDiff> + 'a { // A cfg is enabled if any of `self.conjunctions` evaluate to `true`. self.conjunctions.iter().filter_map(move |conj| { let mut enable = FxHashSet::default(); let mut disable = FxHashSet::default(); for lit in &conj.literals { let atom = lit.var.as_ref()?; let enabled = opts.enabled.contains(atom); if lit.negate && enabled { disable.insert(atom.clone()); } if !lit.negate && !enabled { enable.insert(atom.clone()); } } // Check that this actually makes `conj` true. for lit in &conj.literals { let atom = lit.var.as_ref()?; let enabled = enable.contains(atom) || (opts.enabled.contains(atom) && !disable.contains(atom)); if enabled == lit.negate { return None; } } if enable.is_empty() && disable.is_empty() { return None; } let mut diff = CfgDiff { enable: enable.into_iter().collect(), disable: disable.into_iter().collect(), }; // Undo the FxHashMap randomization for consistent output. diff.enable.sort_unstable(); diff.disable.sort_unstable(); Some(diff) }) } } impl fmt::Display for DnfExpr { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.conjunctions.len() != 1 { write!(f, "any(")?; } for (i, conj) in self.conjunctions.iter().enumerate() { if i != 0 { f.write_str(", ")?; } write!(f, "{}", conj)?; } if self.conjunctions.len() != 1 { write!(f, ")")?; } Ok(()) } } impl Conjunction { fn new(parts: Vec<CfgExpr>) -> Self { let mut literals = Vec::new(); for part in parts { match part { CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => { literals.push(Literal::new(part)); } CfgExpr::All(conj) => { // Flatten. literals.extend(Conjunction::new(conj).literals); } CfgExpr::Any(_) => unreachable!("disjunction in conjunction"), } } Self { literals } } } impl fmt::Display for Conjunction { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.literals.len() != 1 { write!(f, "all(")?; } for (i, lit) in self.literals.iter().enumerate() { if i != 0 { f.write_str(", ")?; } write!(f, "{}", lit)?; } if self.literals.len() != 1 { write!(f, ")")?; } Ok(()) } } impl Literal { fn new(expr: CfgExpr) -> Self { match expr { CfgExpr::Invalid => Self { negate: false, var: None }, CfgExpr::Atom(atom) => Self { negate: false, var: Some(atom) }, CfgExpr::Not(expr) => match *expr { CfgExpr::Invalid => Self { negate: true, var: None }, CfgExpr::Atom(atom) => Self { negate: true, var: Some(atom) }, _ => unreachable!("non-atom {:?}", expr), }, CfgExpr::Any(_) | CfgExpr::All(_) => unreachable!("non-literal {:?}", expr), } } } impl fmt::Display for Literal { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.negate { write!(f, "not(")?; } match &self.var { Some(var) => write!(f, "{}", var)?, None => f.write_str("<invalid>")?, } if self.negate { write!(f, ")")?; } Ok(()) } } struct Builder { expr: DnfExpr, } impl Builder { fn lower(mut self, expr: CfgExpr) -> DnfExpr { let expr = make_nnf(expr); let expr = make_dnf(expr); match expr { CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => { self.expr.conjunctions.push(Conjunction::new(vec![expr])); } CfgExpr::All(conj) => { self.expr.conjunctions.push(Conjunction::new(conj)); } CfgExpr::Any(mut disj) => { disj.reverse(); while let Some(conj) = disj.pop() { match conj { CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::All(_) | CfgExpr::Not(_) => { self.expr.conjunctions.push(Conjunction::new(vec![conj])); } CfgExpr::Any(inner_disj) => { // Flatten. disj.extend(inner_disj.into_iter().rev()); } } } } } self.expr } } fn make_dnf(expr: CfgExpr) -> CfgExpr { match expr { CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => expr, CfgExpr::Any(e) => CfgExpr::Any(e.into_iter().map(|expr| make_dnf(expr)).collect()), CfgExpr::All(e) => { let e = e.into_iter().map(|expr| make_nnf(expr)).collect::<Vec<_>>(); CfgExpr::Any(distribute_conj(&e)) } } } /// Turns a conjunction of expressions into a disjunction of expressions. fn distribute_conj(conj: &[CfgExpr]) -> Vec<CfgExpr> { fn go(out: &mut Vec<CfgExpr>, with: &mut Vec<CfgExpr>, rest: &[CfgExpr]) { match rest { [head, tail @ ..] => match head { CfgExpr::Any(disj) => { for part in disj { with.push(part.clone()); go(out, with, tail); with.pop(); } } _ => { with.push(head.clone()); go(out, with, tail); with.pop(); } }, _ => { // Turn accumulated parts into a new conjunction. out.push(CfgExpr::All(with.clone())); } } } let mut out = Vec::new(); let mut with = Vec::new(); go(&mut out, &mut with, conj); out } fn make_nnf(expr: CfgExpr) -> CfgExpr { match expr { CfgExpr::Invalid | CfgExpr::Atom(_) => expr, CfgExpr::Any(expr) => CfgExpr::Any(expr.into_iter().map(|expr| make_nnf(expr)).collect()), CfgExpr::All(expr) => CfgExpr::All(expr.into_iter().map(|expr| make_nnf(expr)).collect()), CfgExpr::Not(operand) => match *operand { CfgExpr::Invalid | CfgExpr::Atom(_) => CfgExpr::Not(operand.clone()), // Original negated expr CfgExpr::Not(expr) => { // Remove double negation. make_nnf(*expr) } // Convert negated conjunction/disjunction using DeMorgan's Law. CfgExpr::Any(inner) => CfgExpr::All( inner.into_iter().map(|expr| make_nnf(CfgExpr::Not(Box::new(expr)))).collect(), ), CfgExpr::All(inner) => CfgExpr::Any( inner.into_iter().map(|expr| make_nnf(CfgExpr::Not(Box::new(expr)))).collect(), ), }, } }