//! HIR (previously known as descriptors) provides a high-level object oriented //! access to Rust code. //! //! The principal difference between HIR and syntax trees is that HIR is bound //! to a particular crate instance. That is, it has cfg flags and features //! applied. So, the relation between syntax and HIR is many-to-one. //! //! HIR is the public API of the all of the compiler logic above syntax trees. //! It is written in "OO" style. Each type is self contained (as in, it knows it's //! parents and full context). It should be "clean code". //! //! `hir_*` crates are the implementation of the compiler logic. //! They are written in "ECS" style, with relatively little abstractions. //! Many types are not self-contained, and explicitly use local indexes, arenas, etc. //! //! `hir` is what insulates the "we don't know how to actually write an incremental compiler" //! from the ide with completions, hovers, etc. It is a (soft, internal) boundary: //! https://www.tedinski.com/2018/02/06/system-boundaries.html. #![recursion_limit = "512"] mod semantics; mod source_analyzer; mod from_id; mod attrs; mod has_source; pub mod diagnostics; pub mod db; use std::{iter, sync::Arc}; use arrayvec::ArrayVec; use base_db::{CrateDisplayName, CrateId, Edition, FileId}; use either::Either; use hir_def::{ adt::{ReprKind, VariantData}, expr::{BindingAnnotation, LabelId, Pat, PatId}, item_tree::ItemTreeNode, lang_item::LangItemTarget, per_ns::PerNs, resolver::{HasResolver, Resolver}, src::HasSource as _, AdtId, AssocContainerId, AssocItemId, AssocItemLoc, AttrDefId, ConstId, ConstParamId, DefWithBodyId, EnumId, FunctionId, GenericDefId, HasModule, ImplId, LifetimeParamId, LocalEnumVariantId, LocalFieldId, Lookup, ModuleId, StaticId, StructId, TraitId, TypeAliasId, TypeParamId, UnionId, }; use hir_expand::{diagnostics::DiagnosticSink, name::name, MacroDefKind}; use hir_ty::{ autoderef, display::{write_bounds_like_dyn_trait_with_prefix, HirDisplayError, HirFormatter}, method_resolution::{self, TyFingerprint}, to_assoc_type_id, traits::{FnTrait, Solution, SolutionVariables}, AliasTy, BoundVar, CallableDefId, CallableSig, Canonical, DebruijnIndex, GenericPredicate, InEnvironment, Interner, Obligation, ProjectionPredicate, ProjectionTy, Scalar, Substs, Ty, TyDefId, TyKind, TyVariableKind, }; use rustc_hash::FxHashSet; use stdx::{format_to, impl_from}; use syntax::{ ast::{self, AttrsOwner, NameOwner}, AstNode, SmolStr, }; use tt::{Ident, Leaf, Literal, TokenTree}; use crate::db::{DefDatabase, HirDatabase}; pub use crate::{ attrs::{HasAttrs, Namespace}, has_source::HasSource, semantics::{PathResolution, Semantics, SemanticsScope}, }; // Be careful with these re-exports. // // `hir` is the boundary between the compiler and the IDE. It should try hard to // isolate the compiler from the ide, to allow the two to be refactored // independently. Re-exporting something from the compiler is the sure way to // breach the boundary. // // Generally, a refactoring which *removes* a name from this list is a good // idea! pub use { hir_def::{ adt::StructKind, attr::{Attrs, Documentation}, body::scope::ExprScopes, find_path::PrefixKind, import_map, item_scope::ItemInNs, nameres::ModuleSource, path::{ModPath, PathKind}, type_ref::{Mutability, TypeRef}, visibility::Visibility, }, hir_expand::{ name::{known, Name}, ExpandResult, HirFileId, InFile, MacroCallId, MacroCallLoc, /* FIXME */ MacroDefId, MacroFile, Origin, }, hir_ty::display::HirDisplay, }; // These are negative re-exports: pub using these names is forbidden, they // should remain private to hir internals. #[allow(unused)] use { hir_def::path::Path, hir_expand::{hygiene::Hygiene, name::AsName}, }; /// hir::Crate describes a single crate. It's the main interface with which /// a crate's dependencies interact. Mostly, it should be just a proxy for the /// root module. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Crate { pub(crate) id: CrateId, } #[derive(Debug)] pub struct CrateDependency { pub krate: Crate, pub name: Name, } impl Crate { pub fn dependencies(self, db: &dyn HirDatabase) -> Vec { db.crate_graph()[self.id] .dependencies .iter() .map(|dep| { let krate = Crate { id: dep.crate_id }; let name = dep.as_name(); CrateDependency { krate, name } }) .collect() } // FIXME: add `transitive_reverse_dependencies`. pub fn reverse_dependencies(self, db: &dyn HirDatabase) -> Vec { let crate_graph = db.crate_graph(); crate_graph .iter() .filter(|&krate| { crate_graph[krate].dependencies.iter().any(|it| it.crate_id == self.id) }) .map(|id| Crate { id }) .collect() } pub fn root_module(self, db: &dyn HirDatabase) -> Module { let def_map = db.crate_def_map(self.id); Module { id: def_map.module_id(def_map.root()) } } pub fn root_file(self, db: &dyn HirDatabase) -> FileId { db.crate_graph()[self.id].root_file_id } pub fn edition(self, db: &dyn HirDatabase) -> Edition { db.crate_graph()[self.id].edition } pub fn display_name(self, db: &dyn HirDatabase) -> Option { db.crate_graph()[self.id].display_name.clone() } pub fn query_external_importables( self, db: &dyn DefDatabase, query: import_map::Query, ) -> impl Iterator> { import_map::search_dependencies(db, self.into(), query).into_iter().map(|item| match item { ItemInNs::Types(mod_id) | ItemInNs::Values(mod_id) => Either::Left(mod_id.into()), ItemInNs::Macros(mac_id) => Either::Right(mac_id.into()), }) } pub fn all(db: &dyn HirDatabase) -> Vec { db.crate_graph().iter().map(|id| Crate { id }).collect() } /// Try to get the root URL of the documentation of a crate. pub fn get_html_root_url(self: &Crate, db: &dyn HirDatabase) -> Option { // Look for #![doc(html_root_url = "...")] let attrs = db.attrs(AttrDefId::ModuleId(self.root_module(db).into())); let doc_attr_q = attrs.by_key("doc"); if !doc_attr_q.exists() { return None; } let doc_url = doc_attr_q.tt_values().map(|tt| { let name = tt.token_trees.iter() .skip_while(|tt| !matches!(tt, TokenTree::Leaf(Leaf::Ident(Ident{text: ref ident, ..})) if ident == "html_root_url")) .skip(2) .next(); match name { Some(TokenTree::Leaf(Leaf::Literal(Literal{ref text, ..}))) => Some(text), _ => None } }).flat_map(|t| t).next(); doc_url.map(|s| s.trim_matches('"').trim_end_matches('/').to_owned() + "/") } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Module { pub(crate) id: ModuleId, } /// The defs which can be visible in the module. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum ModuleDef { Module(Module), Function(Function), Adt(Adt), // Can't be directly declared, but can be imported. Variant(Variant), Const(Const), Static(Static), Trait(Trait), TypeAlias(TypeAlias), BuiltinType(BuiltinType), } impl_from!( Module, Function, Adt(Struct, Enum, Union), Variant, Const, Static, Trait, TypeAlias, BuiltinType for ModuleDef ); impl From for ModuleDef { fn from(var: VariantDef) -> Self { match var { VariantDef::Struct(t) => Adt::from(t).into(), VariantDef::Union(t) => Adt::from(t).into(), VariantDef::Variant(t) => t.into(), } } } impl ModuleDef { pub fn module(self, db: &dyn HirDatabase) -> Option { match self { ModuleDef::Module(it) => it.parent(db), ModuleDef::Function(it) => Some(it.module(db)), ModuleDef::Adt(it) => Some(it.module(db)), ModuleDef::Variant(it) => Some(it.module(db)), ModuleDef::Const(it) => Some(it.module(db)), ModuleDef::Static(it) => Some(it.module(db)), ModuleDef::Trait(it) => Some(it.module(db)), ModuleDef::TypeAlias(it) => Some(it.module(db)), ModuleDef::BuiltinType(_) => None, } } pub fn canonical_path(&self, db: &dyn HirDatabase) -> Option { let mut segments = vec![self.name(db)?.to_string()]; for m in self.module(db)?.path_to_root(db) { segments.extend(m.name(db).map(|it| it.to_string())) } segments.reverse(); Some(segments.join("::")) } pub fn definition_visibility(&self, db: &dyn HirDatabase) -> Option { let module = match self { ModuleDef::Module(it) => it.parent(db)?, ModuleDef::Function(it) => return Some(it.visibility(db)), ModuleDef::Adt(it) => it.module(db), ModuleDef::Variant(it) => { let parent = it.parent_enum(db); let module = it.module(db); return module.visibility_of(db, &ModuleDef::Adt(Adt::Enum(parent))); } ModuleDef::Const(it) => return Some(it.visibility(db)), ModuleDef::Static(it) => it.module(db), ModuleDef::Trait(it) => it.module(db), ModuleDef::TypeAlias(it) => return Some(it.visibility(db)), ModuleDef::BuiltinType(_) => return None, }; module.visibility_of(db, self) } pub fn name(self, db: &dyn HirDatabase) -> Option { match self { ModuleDef::Adt(it) => Some(it.name(db)), ModuleDef::Trait(it) => Some(it.name(db)), ModuleDef::Function(it) => Some(it.name(db)), ModuleDef::Variant(it) => Some(it.name(db)), ModuleDef::TypeAlias(it) => Some(it.name(db)), ModuleDef::Module(it) => it.name(db), ModuleDef::Const(it) => it.name(db), ModuleDef::Static(it) => it.name(db), ModuleDef::BuiltinType(it) => Some(it.name()), } } pub fn diagnostics(self, db: &dyn HirDatabase, sink: &mut DiagnosticSink) { let id = match self { ModuleDef::Adt(it) => match it { Adt::Struct(it) => it.id.into(), Adt::Enum(it) => it.id.into(), Adt::Union(it) => it.id.into(), }, ModuleDef::Trait(it) => it.id.into(), ModuleDef::Function(it) => it.id.into(), ModuleDef::TypeAlias(it) => it.id.into(), ModuleDef::Module(it) => it.id.into(), ModuleDef::Const(it) => it.id.into(), ModuleDef::Static(it) => it.id.into(), _ => return, }; let module = match self.module(db) { Some(it) => it, None => return, }; hir_ty::diagnostics::validate_module_item(db, module.id.krate(), id, sink) } } impl Module { /// Name of this module. pub fn name(self, db: &dyn HirDatabase) -> Option { let def_map = self.id.def_map(db.upcast()); let parent = def_map[self.id.local_id].parent?; def_map[parent].children.iter().find_map(|(name, module_id)| { if *module_id == self.id.local_id { Some(name.clone()) } else { None } }) } /// Returns the crate this module is part of. pub fn krate(self) -> Crate { Crate { id: self.id.krate() } } /// Topmost parent of this module. Every module has a `crate_root`, but some /// might be missing `krate`. This can happen if a module's file is not included /// in the module tree of any target in `Cargo.toml`. pub fn crate_root(self, db: &dyn HirDatabase) -> Module { let def_map = db.crate_def_map(self.id.krate()); Module { id: def_map.module_id(def_map.root()) } } /// Iterates over all child modules. pub fn children(self, db: &dyn HirDatabase) -> impl Iterator { let def_map = self.id.def_map(db.upcast()); let children = def_map[self.id.local_id] .children .iter() .map(|(_, module_id)| Module { id: def_map.module_id(*module_id) }) .collect::>(); children.into_iter() } /// Finds a parent module. pub fn parent(self, db: &dyn HirDatabase) -> Option { // FIXME: handle block expressions as modules (their parent is in a different DefMap) let def_map = self.id.def_map(db.upcast()); let parent_id = def_map[self.id.local_id].parent?; Some(Module { id: def_map.module_id(parent_id) }) } pub fn path_to_root(self, db: &dyn HirDatabase) -> Vec { let mut res = vec![self]; let mut curr = self; while let Some(next) = curr.parent(db) { res.push(next); curr = next } res } /// Returns a `ModuleScope`: a set of items, visible in this module. pub fn scope( self, db: &dyn HirDatabase, visible_from: Option, ) -> Vec<(Name, ScopeDef)> { self.id.def_map(db.upcast())[self.id.local_id] .scope .entries() .filter_map(|(name, def)| { if let Some(m) = visible_from { let filtered = def.filter_visibility(|vis| vis.is_visible_from(db.upcast(), m.id)); if filtered.is_none() && !def.is_none() { None } else { Some((name, filtered)) } } else { Some((name, def)) } }) .flat_map(|(name, def)| { ScopeDef::all_items(def).into_iter().map(move |item| (name.clone(), item)) }) .collect() } pub fn visibility_of(self, db: &dyn HirDatabase, def: &ModuleDef) -> Option { self.id.def_map(db.upcast())[self.id.local_id].scope.visibility_of(def.clone().into()) } pub fn diagnostics(self, db: &dyn HirDatabase, sink: &mut DiagnosticSink) { let _p = profile::span("Module::diagnostics").detail(|| { format!("{:?}", self.name(db).map_or("".into(), |name| name.to_string())) }); let def_map = self.id.def_map(db.upcast()); def_map.add_diagnostics(db.upcast(), self.id.local_id, sink); for decl in self.declarations(db) { match decl { crate::ModuleDef::Function(f) => f.diagnostics(db, sink), crate::ModuleDef::Module(m) => { // Only add diagnostics from inline modules if def_map[m.id.local_id].origin.is_inline() { m.diagnostics(db, sink) } } _ => { decl.diagnostics(db, sink); } } } for impl_def in self.impl_defs(db) { for item in impl_def.items(db) { if let AssocItem::Function(f) = item { f.diagnostics(db, sink); } } } } pub fn declarations(self, db: &dyn HirDatabase) -> Vec { let def_map = self.id.def_map(db.upcast()); def_map[self.id.local_id].scope.declarations().map(ModuleDef::from).collect() } pub fn impl_defs(self, db: &dyn HirDatabase) -> Vec { let def_map = self.id.def_map(db.upcast()); def_map[self.id.local_id].scope.impls().map(Impl::from).collect() } /// Finds a path that can be used to refer to the given item from within /// this module, if possible. pub fn find_use_path(self, db: &dyn DefDatabase, item: impl Into) -> Option { hir_def::find_path::find_path(db, item.into(), self.into()) } /// Finds a path that can be used to refer to the given item from within /// this module, if possible. This is used for returning import paths for use-statements. pub fn find_use_path_prefixed( self, db: &dyn DefDatabase, item: impl Into, prefix_kind: PrefixKind, ) -> Option { hir_def::find_path::find_path_prefixed(db, item.into(), self.into(), prefix_kind) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Field { pub(crate) parent: VariantDef, pub(crate) id: LocalFieldId, } #[derive(Debug, PartialEq, Eq)] pub enum FieldSource { Named(ast::RecordField), Pos(ast::TupleField), } impl Field { pub fn name(&self, db: &dyn HirDatabase) -> Name { self.parent.variant_data(db).fields()[self.id].name.clone() } /// Returns the type as in the signature of the struct (i.e., with /// placeholder types for type parameters). This is good for showing /// signature help, but not so good to actually get the type of the field /// when you actually have a variable of the struct. pub fn signature_ty(&self, db: &dyn HirDatabase) -> Type { let var_id = self.parent.into(); let generic_def_id: GenericDefId = match self.parent { VariantDef::Struct(it) => it.id.into(), VariantDef::Union(it) => it.id.into(), VariantDef::Variant(it) => it.parent.id.into(), }; let substs = Substs::type_params(db, generic_def_id); let ty = db.field_types(var_id)[self.id].clone().subst(&substs); Type::new(db, self.parent.module(db).id.krate(), var_id, ty) } pub fn parent_def(&self, _db: &dyn HirDatabase) -> VariantDef { self.parent } } impl HasVisibility for Field { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let variant_data = self.parent.variant_data(db); let visibility = &variant_data.fields()[self.id].visibility; let parent_id: hir_def::VariantId = self.parent.into(); visibility.resolve(db.upcast(), &parent_id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Struct { pub(crate) id: StructId, } impl Struct { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.struct_data(self.id).name.clone() } pub fn fields(self, db: &dyn HirDatabase) -> Vec { db.struct_data(self.id) .variant_data .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).container.krate(), self.id) } pub fn repr(self, db: &dyn HirDatabase) -> Option { db.struct_data(self.id).repr.clone() } pub fn kind(self, db: &dyn HirDatabase) -> StructKind { self.variant_data(db).kind() } fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.struct_data(self.id).variant_data.clone() } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Union { pub(crate) id: UnionId, } impl Union { pub fn name(self, db: &dyn HirDatabase) -> Name { db.union_data(self.id).name.clone() } pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).container.krate(), self.id) } pub fn fields(self, db: &dyn HirDatabase) -> Vec { db.union_data(self.id) .variant_data .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.union_data(self.id).variant_data.clone() } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Enum { pub(crate) id: EnumId, } impl Enum { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.enum_data(self.id).name.clone() } pub fn variants(self, db: &dyn HirDatabase) -> Vec { db.enum_data(self.id).variants.iter().map(|(id, _)| Variant { parent: self, id }).collect() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).container.krate(), self.id) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Variant { pub(crate) parent: Enum, pub(crate) id: LocalEnumVariantId, } impl Variant { pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent.module(db) } pub fn parent_enum(self, _db: &dyn HirDatabase) -> Enum { self.parent } pub fn name(self, db: &dyn HirDatabase) -> Name { db.enum_data(self.parent.id).variants[self.id].name.clone() } pub fn fields(self, db: &dyn HirDatabase) -> Vec { self.variant_data(db) .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } pub fn kind(self, db: &dyn HirDatabase) -> StructKind { self.variant_data(db).kind() } pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.enum_data(self.parent.id).variants[self.id].variant_data.clone() } } /// A Data Type #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum Adt { Struct(Struct), Union(Union), Enum(Enum), } impl_from!(Struct, Union, Enum for Adt); impl Adt { pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool { let subst = db.generic_defaults(self.into()); subst.iter().any(|ty| ty.value.is_unknown()) } /// Turns this ADT into a type. Any type parameters of the ADT will be /// turned into unknown types, which is good for e.g. finding the most /// general set of completions, but will not look very nice when printed. pub fn ty(self, db: &dyn HirDatabase) -> Type { let id = AdtId::from(self); Type::from_def(db, id.module(db.upcast()).krate(), id) } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { Adt::Struct(s) => s.module(db), Adt::Union(s) => s.module(db), Adt::Enum(e) => e.module(db), } } pub fn krate(self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } pub fn name(self, db: &dyn HirDatabase) -> Name { match self { Adt::Struct(s) => s.name(db), Adt::Union(u) => u.name(db), Adt::Enum(e) => e.name(db), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum VariantDef { Struct(Struct), Union(Union), Variant(Variant), } impl_from!(Struct, Union, Variant for VariantDef); impl VariantDef { pub fn fields(self, db: &dyn HirDatabase) -> Vec { match self { VariantDef::Struct(it) => it.fields(db), VariantDef::Union(it) => it.fields(db), VariantDef::Variant(it) => it.fields(db), } } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { VariantDef::Struct(it) => it.module(db), VariantDef::Union(it) => it.module(db), VariantDef::Variant(it) => it.module(db), } } pub fn name(&self, db: &dyn HirDatabase) -> Name { match self { VariantDef::Struct(s) => s.name(db), VariantDef::Union(u) => u.name(db), VariantDef::Variant(e) => e.name(db), } } pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc { match self { VariantDef::Struct(it) => it.variant_data(db), VariantDef::Union(it) => it.variant_data(db), VariantDef::Variant(it) => it.variant_data(db), } } } /// The defs which have a body. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum DefWithBody { Function(Function), Static(Static), Const(Const), } impl_from!(Function, Const, Static for DefWithBody); impl DefWithBody { pub fn module(self, db: &dyn HirDatabase) -> Module { match self { DefWithBody::Const(c) => c.module(db), DefWithBody::Function(f) => f.module(db), DefWithBody::Static(s) => s.module(db), } } pub fn name(self, db: &dyn HirDatabase) -> Option { match self { DefWithBody::Function(f) => Some(f.name(db)), DefWithBody::Static(s) => s.name(db), DefWithBody::Const(c) => c.name(db), } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Function { pub(crate) id: FunctionId, } impl Function { pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.lookup(db.upcast()).module(db.upcast()).into() } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.function_data(self.id).name.clone() } /// Get this function's return type pub fn ret_type(self, db: &dyn HirDatabase) -> Type { let resolver = self.id.resolver(db.upcast()); let krate = self.id.lookup(db.upcast()).container.module(db.upcast()).krate(); let ret_type = &db.function_data(self.id).ret_type; let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let ty = ctx.lower_ty(ret_type); Type::new_with_resolver_inner(db, krate, &resolver, ty) } pub fn self_param(self, db: &dyn HirDatabase) -> Option { if !db.function_data(self.id).has_self_param { return None; } Some(SelfParam { func: self.id }) } pub fn assoc_fn_params(self, db: &dyn HirDatabase) -> Vec { let resolver = self.id.resolver(db.upcast()); let krate = self.id.lookup(db.upcast()).container.module(db.upcast()).krate(); let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let environment = db.trait_environment(self.id.into()); db.function_data(self.id) .params .iter() .map(|type_ref| { let ty = Type { krate, ty: InEnvironment { value: ctx.lower_ty(type_ref), environment: environment.clone(), }, }; Param { ty } }) .collect() } pub fn method_params(self, db: &dyn HirDatabase) -> Option> { if self.self_param(db).is_none() { return None; } let mut res = self.assoc_fn_params(db); res.remove(0); Some(res) } pub fn is_unsafe(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).is_unsafe } pub fn diagnostics(self, db: &dyn HirDatabase, sink: &mut DiagnosticSink) { let krate = self.module(db).id.krate(); hir_def::diagnostics::validate_body(db.upcast(), self.id.into(), sink); hir_ty::diagnostics::validate_module_item(db, krate, self.id.into(), sink); hir_ty::diagnostics::validate_body(db, self.id.into(), sink); } /// Whether this function declaration has a definition. /// /// This is false in the case of required (not provided) trait methods. pub fn has_body(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).has_body } /// A textual representation of the HIR of this function for debugging purposes. pub fn debug_hir(self, db: &dyn HirDatabase) -> String { let body = db.body(self.id.into()); let mut result = String::new(); format_to!(result, "HIR expressions in the body of `{}`:\n", self.name(db)); for (id, expr) in body.exprs.iter() { format_to!(result, "{:?}: {:?}\n", id, expr); } result } } // Note: logically, this belongs to `hir_ty`, but we are not using it there yet. pub enum Access { Shared, Exclusive, Owned, } impl From for Access { fn from(mutability: hir_ty::Mutability) -> Access { match mutability { hir_ty::Mutability::Not => Access::Shared, hir_ty::Mutability::Mut => Access::Exclusive, } } } #[derive(Debug)] pub struct Param { ty: Type, } impl Param { pub fn ty(&self) -> &Type { &self.ty } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct SelfParam { func: FunctionId, } impl SelfParam { pub fn access(self, db: &dyn HirDatabase) -> Access { let func_data = db.function_data(self.func); func_data .params .first() .map(|param| match *param { TypeRef::Reference(.., mutability) => match mutability { hir_def::type_ref::Mutability::Shared => Access::Shared, hir_def::type_ref::Mutability::Mut => Access::Exclusive, }, _ => Access::Owned, }) .unwrap_or(Access::Owned) } } impl HasVisibility for Function { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.function_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Const { pub(crate) id: ConstId, } impl Const { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Option { db.const_data(self.id).name.clone() } } impl HasVisibility for Const { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.const_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Static { pub(crate) id: StaticId, } impl Static { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Option { db.static_data(self.id).name.clone() } pub fn is_mut(self, db: &dyn HirDatabase) -> bool { db.static_data(self.id).mutable } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Trait { pub(crate) id: TraitId, } impl Trait { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.trait_data(self.id).name.clone() } pub fn items(self, db: &dyn HirDatabase) -> Vec { db.trait_data(self.id).items.iter().map(|(_name, it)| (*it).into()).collect() } pub fn is_auto(self, db: &dyn HirDatabase) -> bool { db.trait_data(self.id).auto } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct TypeAlias { pub(crate) id: TypeAliasId, } impl TypeAlias { pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool { let subst = db.generic_defaults(self.id.into()); subst.iter().any(|ty| ty.value.is_unknown()) } pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn krate(self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } pub fn type_ref(self, db: &dyn HirDatabase) -> Option { db.type_alias_data(self.id).type_ref.clone() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).module(db.upcast()).krate(), self.id) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.type_alias_data(self.id).name.clone() } } impl HasVisibility for TypeAlias { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.type_alias_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct BuiltinType { pub(crate) inner: hir_def::builtin_type::BuiltinType, } impl BuiltinType { pub fn ty(self, db: &dyn HirDatabase, module: Module) -> Type { let resolver = module.id.resolver(db.upcast()); Type::new_with_resolver(db, &resolver, Ty::builtin(self.inner)) .expect("crate not present in resolver") } pub fn name(self) -> Name { self.inner.as_name() } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct MacroDef { pub(crate) id: MacroDefId, } impl MacroDef { /// FIXME: right now, this just returns the root module of the crate that /// defines this macro. The reasons for this is that macros are expanded /// early, in `hir_expand`, where modules simply do not exist yet. pub fn module(self, db: &dyn HirDatabase) -> Option { let krate = self.id.krate; let def_map = db.crate_def_map(krate); let module_id = def_map.root(); Some(Module { id: def_map.module_id(module_id) }) } /// XXX: this parses the file pub fn name(self, db: &dyn HirDatabase) -> Option { self.source(db)?.value.name().map(|it| it.as_name()) } /// Indicate it is a proc-macro pub fn is_proc_macro(&self) -> bool { matches!(self.id.kind, MacroDefKind::ProcMacro(_)) } /// Indicate it is a derive macro pub fn is_derive_macro(&self) -> bool { matches!(self.id.kind, MacroDefKind::ProcMacro(_) | MacroDefKind::BuiltInDerive(_)) } } /// Invariant: `inner.as_assoc_item(db).is_some()` /// We do not actively enforce this invariant. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum AssocItem { Function(Function), Const(Const), TypeAlias(TypeAlias), } #[derive(Debug)] pub enum AssocItemContainer { Trait(Trait), Impl(Impl), } pub trait AsAssocItem { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option; } impl AsAssocItem for Function { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::Function, self.id) } } impl AsAssocItem for Const { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::Const, self.id) } } impl AsAssocItem for TypeAlias { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::TypeAlias, self.id) } } impl AsAssocItem for ModuleDef { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { match self { ModuleDef::Function(it) => it.as_assoc_item(db), ModuleDef::Const(it) => it.as_assoc_item(db), ModuleDef::TypeAlias(it) => it.as_assoc_item(db), _ => None, } } } fn as_assoc_item(db: &dyn HirDatabase, ctor: CTOR, id: ID) -> Option where ID: Lookup>, DEF: From, CTOR: FnOnce(DEF) -> AssocItem, AST: ItemTreeNode, { match id.lookup(db.upcast()).container { AssocContainerId::TraitId(_) | AssocContainerId::ImplId(_) => Some(ctor(DEF::from(id))), AssocContainerId::ModuleId(_) => None, } } impl AssocItem { pub fn name(self, db: &dyn HirDatabase) -> Option { match self { AssocItem::Function(it) => Some(it.name(db)), AssocItem::Const(it) => it.name(db), AssocItem::TypeAlias(it) => Some(it.name(db)), } } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { AssocItem::Function(f) => f.module(db), AssocItem::Const(c) => c.module(db), AssocItem::TypeAlias(t) => t.module(db), } } pub fn container(self, db: &dyn HirDatabase) -> AssocItemContainer { let container = match self { AssocItem::Function(it) => it.id.lookup(db.upcast()).container, AssocItem::Const(it) => it.id.lookup(db.upcast()).container, AssocItem::TypeAlias(it) => it.id.lookup(db.upcast()).container, }; match container { AssocContainerId::TraitId(id) => AssocItemContainer::Trait(id.into()), AssocContainerId::ImplId(id) => AssocItemContainer::Impl(id.into()), AssocContainerId::ModuleId(_) => panic!("invalid AssocItem"), } } pub fn containing_trait(self, db: &dyn HirDatabase) -> Option { match self.container(db) { AssocItemContainer::Trait(t) => Some(t), _ => None, } } } impl HasVisibility for AssocItem { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { match self { AssocItem::Function(f) => f.visibility(db), AssocItem::Const(c) => c.visibility(db), AssocItem::TypeAlias(t) => t.visibility(db), } } } #[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)] pub enum GenericDef { Function(Function), Adt(Adt), Trait(Trait), TypeAlias(TypeAlias), Impl(Impl), // enum variants cannot have generics themselves, but their parent enums // can, and this makes some code easier to write Variant(Variant), // consts can have type parameters from their parents (i.e. associated consts of traits) Const(Const), } impl_from!( Function, Adt(Struct, Enum, Union), Trait, TypeAlias, Impl, Variant, Const for GenericDef ); impl GenericDef { pub fn params(self, db: &dyn HirDatabase) -> Vec { let generics = db.generic_params(self.into()); let ty_params = generics .types .iter() .map(|(local_id, _)| TypeParam { id: TypeParamId { parent: self.into(), local_id } }) .map(GenericParam::TypeParam); let lt_params = generics .lifetimes .iter() .map(|(local_id, _)| LifetimeParam { id: LifetimeParamId { parent: self.into(), local_id }, }) .map(GenericParam::LifetimeParam); let const_params = generics .consts .iter() .map(|(local_id, _)| ConstParam { id: ConstParamId { parent: self.into(), local_id } }) .map(GenericParam::ConstParam); ty_params.chain(lt_params).chain(const_params).collect() } pub fn type_params(self, db: &dyn HirDatabase) -> Vec { let generics = db.generic_params(self.into()); generics .types .iter() .map(|(local_id, _)| TypeParam { id: TypeParamId { parent: self.into(), local_id } }) .collect() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct Local { pub(crate) parent: DefWithBodyId, pub(crate) pat_id: PatId, } impl Local { pub fn is_param(self, db: &dyn HirDatabase) -> bool { let src = self.source(db); match src.value { Either::Left(bind_pat) => { bind_pat.syntax().ancestors().any(|it| ast::Param::can_cast(it.kind())) } Either::Right(_self_param) => true, } } // FIXME: why is this an option? It shouldn't be? pub fn name(self, db: &dyn HirDatabase) -> Option { let body = db.body(self.parent.into()); match &body[self.pat_id] { Pat::Bind { name, .. } => Some(name.clone()), _ => None, } } pub fn is_self(self, db: &dyn HirDatabase) -> bool { self.name(db) == Some(name![self]) } pub fn is_mut(self, db: &dyn HirDatabase) -> bool { let body = db.body(self.parent.into()); matches!(&body[self.pat_id], Pat::Bind { mode: BindingAnnotation::Mutable, .. }) } pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody { self.parent.into() } pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent(db).module(db) } pub fn ty(self, db: &dyn HirDatabase) -> Type { let def = DefWithBodyId::from(self.parent); let infer = db.infer(def); let ty = infer[self.pat_id].clone(); let krate = def.module(db.upcast()).krate(); Type::new(db, krate, def, ty) } pub fn source(self, db: &dyn HirDatabase) -> InFile> { let (_body, source_map) = db.body_with_source_map(self.parent.into()); let src = source_map.pat_syntax(self.pat_id).unwrap(); // Hmm... let root = src.file_syntax(db.upcast()); src.map(|ast| { ast.map_left(|it| it.cast().unwrap().to_node(&root)).map_right(|it| it.to_node(&root)) }) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct Label { pub(crate) parent: DefWithBodyId, pub(crate) label_id: LabelId, } impl Label { pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent(db).module(db) } pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody { self.parent.into() } pub fn name(self, db: &dyn HirDatabase) -> Name { let body = db.body(self.parent.into()); body[self.label_id].name.clone() } pub fn source(self, db: &dyn HirDatabase) -> InFile { let (_body, source_map) = db.body_with_source_map(self.parent.into()); let src = source_map.label_syntax(self.label_id); let root = src.file_syntax(db.upcast()); src.map(|ast| ast.to_node(&root)) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum GenericParam { TypeParam(TypeParam), LifetimeParam(LifetimeParam), ConstParam(ConstParam), } impl_from!(TypeParam, LifetimeParam, ConstParam for GenericParam); impl GenericParam { pub fn module(self, db: &dyn HirDatabase) -> Module { match self { GenericParam::TypeParam(it) => it.module(db), GenericParam::LifetimeParam(it) => it.module(db), GenericParam::ConstParam(it) => it.module(db), } } pub fn name(self, db: &dyn HirDatabase) -> Name { match self { GenericParam::TypeParam(it) => it.name(db), GenericParam::LifetimeParam(it) => it.name(db), GenericParam::ConstParam(it) => it.name(db), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct TypeParam { pub(crate) id: TypeParamId, } impl TypeParam { pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent); params.types[self.id.local_id].name.clone().unwrap_or_else(Name::missing) } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent.module(db.upcast()).into() } pub fn ty(self, db: &dyn HirDatabase) -> Type { let resolver = self.id.parent.resolver(db.upcast()); let krate = self.id.parent.module(db.upcast()).krate(); let ty = TyKind::Placeholder(hir_ty::to_placeholder_idx(db, self.id)).intern(&Interner); Type::new_with_resolver_inner(db, krate, &resolver, ty) } pub fn trait_bounds(self, db: &dyn HirDatabase) -> Vec { db.generic_predicates_for_param(self.id) .into_iter() .filter_map(|pred| match &pred.value { hir_ty::GenericPredicate::Implemented(trait_ref) => { Some(Trait::from(trait_ref.trait_)) } _ => None, }) .collect() } pub fn default(self, db: &dyn HirDatabase) -> Option { let params = db.generic_defaults(self.id.parent); let local_idx = hir_ty::param_idx(db, self.id)?; let resolver = self.id.parent.resolver(db.upcast()); let krate = self.id.parent.module(db.upcast()).krate(); let ty = params.get(local_idx)?.clone(); let subst = Substs::type_params(db, self.id.parent); let ty = ty.subst(&subst.prefix(local_idx)); Some(Type::new_with_resolver_inner(db, krate, &resolver, ty)) } } impl HirDisplay for TypeParam { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { write!(f, "{}", self.name(f.db))?; let bounds = f.db.generic_predicates_for_param(self.id); let substs = Substs::type_params(f.db, self.id.parent); let predicates = bounds.iter().cloned().map(|b| b.subst(&substs)).collect::>(); if !(predicates.is_empty() || f.omit_verbose_types()) { write_bounds_like_dyn_trait_with_prefix(":", &predicates, f)?; } Ok(()) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct LifetimeParam { pub(crate) id: LifetimeParamId, } impl LifetimeParam { pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent); params.lifetimes[self.id.local_id].name.clone() } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent.module(db.upcast()).into() } pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef { self.id.parent.into() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct ConstParam { pub(crate) id: ConstParamId, } impl ConstParam { pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent); params.consts[self.id.local_id].name.clone() } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent.module(db.upcast()).into() } pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef { self.id.parent.into() } pub fn ty(self, db: &dyn HirDatabase) -> Type { let def = self.id.parent; let krate = def.module(db.upcast()).krate(); Type::new(db, krate, def, db.const_param_ty(self.id)) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Impl { pub(crate) id: ImplId, } impl Impl { pub fn all_in_crate(db: &dyn HirDatabase, krate: Crate) -> Vec { let inherent = db.inherent_impls_in_crate(krate.id); let trait_ = db.trait_impls_in_crate(krate.id); inherent.all_impls().chain(trait_.all_impls()).map(Self::from).collect() } pub fn all_for_type(db: &dyn HirDatabase, Type { krate, ty }: Type) -> Vec { let def_crates = match ty.value.def_crates(db, krate) { Some(def_crates) => def_crates, None => return Vec::new(), }; let filter = |impl_def: &Impl| { let target_ty = impl_def.target_ty(db); let rref = target_ty.remove_ref(); ty.value.equals_ctor(rref.as_ref().map_or(&target_ty.ty.value, |it| &it.ty.value)) }; let mut all = Vec::new(); def_crates.into_iter().for_each(|id| { all.extend(db.inherent_impls_in_crate(id).all_impls().map(Self::from).filter(filter)) }); let fp = TyFingerprint::for_impl(&ty.value); for id in db.crate_graph().iter() { match fp { Some(fp) => all.extend( db.trait_impls_in_crate(id).for_self_ty(fp).map(Self::from).filter(filter), ), None => all .extend(db.trait_impls_in_crate(id).all_impls().map(Self::from).filter(filter)), } } all } pub fn all_for_trait(db: &dyn HirDatabase, trait_: Trait) -> Vec { let krate = trait_.module(db).krate(); let mut all = Vec::new(); for Crate { id } in krate.reverse_dependencies(db).into_iter().chain(Some(krate)) { let impls = db.trait_impls_in_crate(id); all.extend(impls.for_trait(trait_.id).map(Self::from)) } all } // FIXME: the return type is wrong. This should be a hir version of // `TraitRef` (ie, resolved `TypeRef`). pub fn target_trait(self, db: &dyn HirDatabase) -> Option { db.impl_data(self.id).target_trait.clone() } pub fn target_ty(self, db: &dyn HirDatabase) -> Type { let impl_data = db.impl_data(self.id); let resolver = self.id.resolver(db.upcast()); let krate = self.id.lookup(db.upcast()).container.krate(); let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let ty = ctx.lower_ty(&impl_data.target_type); Type::new_with_resolver_inner(db, krate, &resolver, ty) } pub fn items(self, db: &dyn HirDatabase) -> Vec { db.impl_data(self.id).items.iter().map(|it| (*it).into()).collect() } pub fn is_negative(self, db: &dyn HirDatabase) -> bool { db.impl_data(self.id).is_negative } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.lookup(db.upcast()).container.into() } pub fn krate(self, db: &dyn HirDatabase) -> Crate { Crate { id: self.module(db).id.krate() } } pub fn is_builtin_derive(self, db: &dyn HirDatabase) -> Option> { let src = self.source(db)?; let item = src.file_id.is_builtin_derive(db.upcast())?; let hygenic = hir_expand::hygiene::Hygiene::new(db.upcast(), item.file_id); // FIXME: handle `cfg_attr` let attr = item .value .attrs() .filter_map(|it| { let path = ModPath::from_src(it.path()?, &hygenic)?; if path.as_ident()?.to_string() == "derive" { Some(it) } else { None } }) .last()?; Some(item.with_value(attr)) } } #[derive(Clone, PartialEq, Eq, Debug)] pub struct Type { krate: CrateId, ty: InEnvironment, } impl Type { pub(crate) fn new_with_resolver( db: &dyn HirDatabase, resolver: &Resolver, ty: Ty, ) -> Option { let krate = resolver.krate()?; Some(Type::new_with_resolver_inner(db, krate, resolver, ty)) } pub(crate) fn new_with_resolver_inner( db: &dyn HirDatabase, krate: CrateId, resolver: &Resolver, ty: Ty, ) -> Type { let environment = resolver.generic_def().map_or_else(Default::default, |d| db.trait_environment(d)); Type { krate, ty: InEnvironment { value: ty, environment } } } fn new(db: &dyn HirDatabase, krate: CrateId, lexical_env: impl HasResolver, ty: Ty) -> Type { let resolver = lexical_env.resolver(db.upcast()); let environment = resolver.generic_def().map_or_else(Default::default, |d| db.trait_environment(d)); Type { krate, ty: InEnvironment { value: ty, environment } } } fn from_def( db: &dyn HirDatabase, krate: CrateId, def: impl HasResolver + Into + Into, ) -> Type { let substs = Substs::build_for_def(db, def).fill_with_unknown().build(); let ty = db.ty(def.into()).subst(&substs); Type::new(db, krate, def, ty) } pub fn is_unit(&self) -> bool { matches!(self.ty.value.interned(&Interner), TyKind::Tuple(0, ..)) } pub fn is_bool(&self) -> bool { matches!(self.ty.value.interned(&Interner), TyKind::Scalar(Scalar::Bool)) } pub fn is_mutable_reference(&self) -> bool { matches!(self.ty.value.interned(&Interner), TyKind::Ref(hir_ty::Mutability::Mut, ..)) } pub fn is_usize(&self) -> bool { matches!( self.ty.value.interned(&Interner), TyKind::Scalar(Scalar::Uint(hir_ty::primitive::UintTy::Usize)) ) } pub fn remove_ref(&self) -> Option { match &self.ty.value.interned(&Interner) { TyKind::Ref(.., ty) => Some(self.derived(ty.clone())), _ => None, } } pub fn is_unknown(&self) -> bool { self.ty.value.is_unknown() } /// Checks that particular type `ty` implements `std::future::Future`. /// This function is used in `.await` syntax completion. pub fn impls_future(&self, db: &dyn HirDatabase) -> bool { // No special case for the type of async block, since Chalk can figure it out. let krate = self.krate; let std_future_trait = db.lang_item(krate, "future_trait".into()).and_then(|it| it.as_trait()); let std_future_trait = match std_future_trait { Some(it) => it, None => return false, }; let canonical_ty = Canonical { value: self.ty.value.clone(), kinds: Arc::new([]) }; method_resolution::implements_trait( &canonical_ty, db, self.ty.environment.clone(), krate, std_future_trait, ) } /// Checks that particular type `ty` implements `std::ops::FnOnce`. /// /// This function can be used to check if a particular type is callable, since FnOnce is a /// supertrait of Fn and FnMut, so all callable types implements at least FnOnce. pub fn impls_fnonce(&self, db: &dyn HirDatabase) -> bool { let krate = self.krate; let fnonce_trait = match FnTrait::FnOnce.get_id(db, krate) { Some(it) => it, None => return false, }; let canonical_ty = Canonical { value: self.ty.value.clone(), kinds: Arc::new([]) }; method_resolution::implements_trait_unique( &canonical_ty, db, self.ty.environment.clone(), krate, fnonce_trait, ) } pub fn impls_trait(&self, db: &dyn HirDatabase, trait_: Trait, args: &[Type]) -> bool { let trait_ref = hir_ty::TraitRef { trait_: trait_.id, substs: Substs::build_for_def(db, trait_.id) .push(self.ty.value.clone()) .fill(args.iter().map(|t| t.ty.value.clone())) .build(), }; let goal = Canonical { value: hir_ty::InEnvironment::new( self.ty.environment.clone(), hir_ty::Obligation::Trait(trait_ref), ), kinds: Arc::new([]), }; db.trait_solve(self.krate, goal).is_some() } pub fn normalize_trait_assoc_type( &self, db: &dyn HirDatabase, trait_: Trait, args: &[Type], alias: TypeAlias, ) -> Option { let subst = Substs::build_for_def(db, trait_.id) .push(self.ty.value.clone()) .fill(args.iter().map(|t| t.ty.value.clone())) .build(); let predicate = ProjectionPredicate { projection_ty: ProjectionTy { associated_ty_id: to_assoc_type_id(alias.id), substitution: subst, }, ty: TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, 0)).intern(&Interner), }; let goal = Canonical { value: InEnvironment::new( self.ty.environment.clone(), Obligation::Projection(predicate), ), kinds: Arc::new([TyVariableKind::General]), }; match db.trait_solve(self.krate, goal)? { Solution::Unique(SolutionVariables(subst)) => { subst.value.first().map(|ty| self.derived(ty.clone())) } Solution::Ambig(_) => None, } } pub fn is_copy(&self, db: &dyn HirDatabase) -> bool { let lang_item = db.lang_item(self.krate, SmolStr::new("copy")); let copy_trait = match lang_item { Some(LangItemTarget::TraitId(it)) => it, _ => return false, }; self.impls_trait(db, copy_trait.into(), &[]) } pub fn as_callable(&self, db: &dyn HirDatabase) -> Option { let def = self.ty.value.callable_def(db); let sig = self.ty.value.callable_sig(db)?; Some(Callable { ty: self.clone(), sig, def, is_bound_method: false }) } pub fn is_closure(&self) -> bool { matches!(&self.ty.value.interned(&Interner), TyKind::Closure { .. }) } pub fn is_fn(&self) -> bool { matches!(&self.ty.value.interned(&Interner), TyKind::FnDef(..) | TyKind::Function { .. }) } pub fn is_packed(&self, db: &dyn HirDatabase) -> bool { let adt_id = match self.ty.value.interned(&Interner) { &TyKind::Adt(hir_ty::AdtId(adt_id), ..) => adt_id, _ => return false, }; let adt = adt_id.into(); match adt { Adt::Struct(s) => matches!(s.repr(db), Some(ReprKind::Packed)), _ => false, } } pub fn is_raw_ptr(&self) -> bool { matches!(&self.ty.value.interned(&Interner), TyKind::Raw(..)) } pub fn contains_unknown(&self) -> bool { return go(&self.ty.value); fn go(ty: &Ty) -> bool { match ty.interned(&Interner) { TyKind::Unknown => true, TyKind::Adt(_, substs) | TyKind::AssociatedType(_, substs) | TyKind::Tuple(_, substs) | TyKind::OpaqueType(_, substs) | TyKind::FnDef(_, substs) | TyKind::Closure(_, substs) => substs.iter().any(go), TyKind::Array(ty) | TyKind::Slice(ty) | TyKind::Raw(_, ty) | TyKind::Ref(_, ty) => { go(ty) } TyKind::Scalar(_) | TyKind::Str | TyKind::Never | TyKind::Placeholder(_) | TyKind::BoundVar(_) | TyKind::InferenceVar(_, _) | TyKind::Dyn(_) | TyKind::Function(_) | TyKind::Alias(_) | TyKind::ForeignType(_) => false, } } } pub fn fields(&self, db: &dyn HirDatabase) -> Vec<(Field, Type)> { let (variant_id, substs) = match self.ty.value.interned(&Interner) { &TyKind::Adt(hir_ty::AdtId(AdtId::StructId(s)), ref substs) => (s.into(), substs), &TyKind::Adt(hir_ty::AdtId(AdtId::UnionId(u)), ref substs) => (u.into(), substs), _ => return Vec::new(), }; db.field_types(variant_id) .iter() .map(|(local_id, ty)| { let def = Field { parent: variant_id.into(), id: local_id }; let ty = ty.clone().subst(substs); (def, self.derived(ty)) }) .collect() } pub fn tuple_fields(&self, _db: &dyn HirDatabase) -> Vec { if let TyKind::Tuple(_, substs) = &self.ty.value.interned(&Interner) { substs.iter().map(|ty| self.derived(ty.clone())).collect() } else { Vec::new() } } pub fn autoderef<'a>(&'a self, db: &'a dyn HirDatabase) -> impl Iterator + 'a { // There should be no inference vars in types passed here // FIXME check that? let canonical = Canonical { value: self.ty.value.clone(), kinds: Arc::new([]) }; let environment = self.ty.environment.clone(); let ty = InEnvironment { value: canonical, environment }; autoderef(db, Some(self.krate), ty) .map(|canonical| canonical.value) .map(move |ty| self.derived(ty)) } // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplDefs`. pub fn iterate_assoc_items( self, db: &dyn HirDatabase, krate: Crate, mut callback: impl FnMut(AssocItem) -> Option, ) -> Option { for krate in self.ty.value.def_crates(db, krate.id)? { let impls = db.inherent_impls_in_crate(krate); for impl_def in impls.for_self_ty(&self.ty.value) { for &item in db.impl_data(*impl_def).items.iter() { if let Some(result) = callback(item.into()) { return Some(result); } } } } None } pub fn type_parameters(&self) -> impl Iterator + '_ { self.ty .value .strip_references() .substs() .into_iter() .flat_map(|substs| substs.iter()) .map(move |ty| self.derived(ty.clone())) } pub fn iterate_method_candidates( &self, db: &dyn HirDatabase, krate: Crate, traits_in_scope: &FxHashSet, name: Option<&Name>, mut callback: impl FnMut(&Ty, Function) -> Option, ) -> Option { // There should be no inference vars in types passed here // FIXME check that? // FIXME replace Unknown by bound vars here let canonical = Canonical { value: self.ty.value.clone(), kinds: Arc::new([]) }; let env = self.ty.environment.clone(); let krate = krate.id; method_resolution::iterate_method_candidates( &canonical, db, env, krate, traits_in_scope, name, method_resolution::LookupMode::MethodCall, |ty, it| match it { AssocItemId::FunctionId(f) => callback(ty, f.into()), _ => None, }, ) } pub fn iterate_path_candidates( &self, db: &dyn HirDatabase, krate: Crate, traits_in_scope: &FxHashSet, name: Option<&Name>, mut callback: impl FnMut(&Ty, AssocItem) -> Option, ) -> Option { // There should be no inference vars in types passed here // FIXME check that? // FIXME replace Unknown by bound vars here let canonical = Canonical { value: self.ty.value.clone(), kinds: Arc::new([]) }; let env = self.ty.environment.clone(); let krate = krate.id; method_resolution::iterate_method_candidates( &canonical, db, env, krate, traits_in_scope, name, method_resolution::LookupMode::Path, |ty, it| callback(ty, it.into()), ) } pub fn as_adt(&self) -> Option { let (adt, _subst) = self.ty.value.as_adt()?; Some(adt.into()) } pub fn as_dyn_trait(&self) -> Option { self.ty.value.dyn_trait().map(Into::into) } pub fn as_impl_traits(&self, db: &dyn HirDatabase) -> Option> { self.ty.value.impl_trait_bounds(db).map(|it| { it.into_iter() .filter_map(|pred| match pred { hir_ty::GenericPredicate::Implemented(trait_ref) => { Some(Trait::from(trait_ref.trait_)) } _ => None, }) .collect() }) } pub fn as_associated_type_parent_trait(&self, db: &dyn HirDatabase) -> Option { self.ty.value.associated_type_parent_trait(db).map(Into::into) } fn derived(&self, ty: Ty) -> Type { Type { krate: self.krate, ty: InEnvironment { value: ty, environment: self.ty.environment.clone() }, } } pub fn walk(&self, db: &dyn HirDatabase, mut cb: impl FnMut(Type)) { // TypeWalk::walk for a Ty at first visits parameters and only after that the Ty itself. // We need a different order here. fn walk_substs( db: &dyn HirDatabase, type_: &Type, substs: &Substs, cb: &mut impl FnMut(Type), ) { for ty in substs.iter() { walk_type(db, &type_.derived(ty.clone()), cb); } } fn walk_bounds( db: &dyn HirDatabase, type_: &Type, bounds: &[GenericPredicate], cb: &mut impl FnMut(Type), ) { for pred in bounds { match pred { GenericPredicate::Implemented(trait_ref) => { cb(type_.clone()); walk_substs(db, type_, &trait_ref.substs, cb); } _ => (), } } } fn walk_type(db: &dyn HirDatabase, type_: &Type, cb: &mut impl FnMut(Type)) { let ty = type_.ty.value.strip_references(); match ty.interned(&Interner) { TyKind::Adt(..) => { cb(type_.derived(ty.clone())); } TyKind::AssociatedType(..) => { if let Some(_) = ty.associated_type_parent_trait(db) { cb(type_.derived(ty.clone())); } } TyKind::OpaqueType(..) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } } TyKind::Alias(AliasTy::Opaque(opaque_ty)) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } walk_substs(db, type_, &opaque_ty.substitution, cb); } TyKind::Placeholder(_) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } } TyKind::Dyn(bounds) => { walk_bounds(db, &type_.derived(ty.clone()), bounds.as_ref(), cb); } TyKind::Ref(_, ty) | TyKind::Raw(_, ty) | TyKind::Array(ty) | TyKind::Slice(ty) => { walk_type(db, &type_.derived(ty.clone()), cb); } _ => {} } if let Some(substs) = ty.substs() { walk_substs(db, type_, &substs, cb); } } walk_type(db, self, &mut cb); } } impl HirDisplay for Type { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { self.ty.value.hir_fmt(f) } } // FIXME: closures #[derive(Debug)] pub struct Callable { ty: Type, sig: CallableSig, def: Option, pub(crate) is_bound_method: bool, } pub enum CallableKind { Function(Function), TupleStruct(Struct), TupleEnumVariant(Variant), Closure, } impl Callable { pub fn kind(&self) -> CallableKind { match self.def { Some(CallableDefId::FunctionId(it)) => CallableKind::Function(it.into()), Some(CallableDefId::StructId(it)) => CallableKind::TupleStruct(it.into()), Some(CallableDefId::EnumVariantId(it)) => CallableKind::TupleEnumVariant(it.into()), None => CallableKind::Closure, } } pub fn receiver_param(&self, db: &dyn HirDatabase) -> Option { let func = match self.def { Some(CallableDefId::FunctionId(it)) if self.is_bound_method => it, _ => return None, }; let src = func.lookup(db.upcast()).source(db.upcast()); let param_list = src.value.param_list()?; param_list.self_param() } pub fn n_params(&self) -> usize { self.sig.params().len() - if self.is_bound_method { 1 } else { 0 } } pub fn params( &self, db: &dyn HirDatabase, ) -> Vec<(Option>, Type)> { let types = self .sig .params() .iter() .skip(if self.is_bound_method { 1 } else { 0 }) .map(|ty| self.ty.derived(ty.clone())); let patterns = match self.def { Some(CallableDefId::FunctionId(func)) => { let src = func.lookup(db.upcast()).source(db.upcast()); src.value.param_list().map(|param_list| { param_list .self_param() .map(|it| Some(Either::Left(it))) .filter(|_| !self.is_bound_method) .into_iter() .chain(param_list.params().map(|it| it.pat().map(Either::Right))) }) } _ => None, }; patterns.into_iter().flatten().chain(iter::repeat(None)).zip(types).collect() } pub fn return_type(&self) -> Type { self.ty.derived(self.sig.ret().clone()) } } /// For IDE only #[derive(Debug, PartialEq, Eq, Hash)] pub enum ScopeDef { ModuleDef(ModuleDef), MacroDef(MacroDef), GenericParam(GenericParam), ImplSelfType(Impl), AdtSelfType(Adt), Local(Local), Unknown, } impl ScopeDef { pub fn all_items(def: PerNs) -> ArrayVec<[Self; 3]> { let mut items = ArrayVec::new(); match (def.take_types(), def.take_values()) { (Some(m1), None) => items.push(ScopeDef::ModuleDef(m1.into())), (None, Some(m2)) => items.push(ScopeDef::ModuleDef(m2.into())), (Some(m1), Some(m2)) => { // Some items, like unit structs and enum variants, are // returned as both a type and a value. Here we want // to de-duplicate them. if m1 != m2 { items.push(ScopeDef::ModuleDef(m1.into())); items.push(ScopeDef::ModuleDef(m2.into())); } else { items.push(ScopeDef::ModuleDef(m1.into())); } } (None, None) => {} }; if let Some(macro_def_id) = def.take_macros() { items.push(ScopeDef::MacroDef(macro_def_id.into())); } if items.is_empty() { items.push(ScopeDef::Unknown); } items } } impl From for ScopeDef { fn from(item: ItemInNs) -> Self { match item { ItemInNs::Types(id) => ScopeDef::ModuleDef(id.into()), ItemInNs::Values(id) => ScopeDef::ModuleDef(id.into()), ItemInNs::Macros(id) => ScopeDef::MacroDef(id.into()), } } } pub trait HasVisibility { fn visibility(&self, db: &dyn HirDatabase) -> Visibility; fn is_visible_from(&self, db: &dyn HirDatabase, module: Module) -> bool { let vis = self.visibility(db); vis.is_visible_from(db.upcast(), module.id) } }