//! See `Semantics`. mod source_to_def; use std::{cell::RefCell, fmt, iter::successors}; use base_db::{FileId, FileRange}; use hir_def::{ resolver::{self, HasResolver, Resolver, TypeNs}, AsMacroCall, FunctionId, TraitId, VariantId, }; use hir_expand::{hygiene::Hygiene, name::AsName, ExpansionInfo}; use hir_ty::associated_type_shorthand_candidates; use itertools::Itertools; use rustc_hash::{FxHashMap, FxHashSet}; use syntax::{algo::find_node_at_offset, ast, AstNode, SyntaxNode, SyntaxToken, TextSize}; use crate::{ code_model::Access, db::HirDatabase, diagnostics::Diagnostic, semantics::source_to_def::{ChildContainer, SourceToDefCache, SourceToDefCtx}, source_analyzer::{resolve_hir_path, SourceAnalyzer}, AssocItem, Callable, Crate, Field, Function, HirFileId, ImplDef, InFile, Local, MacroDef, Module, ModuleDef, Name, Path, ScopeDef, Trait, Type, TypeAlias, TypeParam, VariantDef, }; #[derive(Debug, Clone, PartialEq, Eq)] pub enum PathResolution { /// An item Def(ModuleDef), /// A local binding (only value namespace) Local(Local), /// A generic parameter TypeParam(TypeParam), SelfType(ImplDef), Macro(MacroDef), AssocItem(AssocItem), } impl PathResolution { fn in_type_ns(&self) -> Option<TypeNs> { match self { PathResolution::Def(ModuleDef::Adt(adt)) => Some(TypeNs::AdtId((*adt).into())), PathResolution::Def(ModuleDef::BuiltinType(builtin)) => { Some(TypeNs::BuiltinType(*builtin)) } PathResolution::Def(ModuleDef::Const(_)) | PathResolution::Def(ModuleDef::EnumVariant(_)) | PathResolution::Def(ModuleDef::Function(_)) | PathResolution::Def(ModuleDef::Module(_)) | PathResolution::Def(ModuleDef::Static(_)) | PathResolution::Def(ModuleDef::Trait(_)) => None, PathResolution::Def(ModuleDef::TypeAlias(alias)) => { Some(TypeNs::TypeAliasId((*alias).into())) } PathResolution::Local(_) | PathResolution::Macro(_) => None, PathResolution::TypeParam(param) => Some(TypeNs::GenericParam((*param).into())), PathResolution::SelfType(impl_def) => Some(TypeNs::SelfType((*impl_def).into())), PathResolution::AssocItem(AssocItem::Const(_)) | PathResolution::AssocItem(AssocItem::Function(_)) => None, PathResolution::AssocItem(AssocItem::TypeAlias(alias)) => { Some(TypeNs::TypeAliasId((*alias).into())) } } } /// Returns an iterator over associated types that may be specified after this path (using /// `Ty::Assoc` syntax). pub fn assoc_type_shorthand_candidates<R>( &self, db: &dyn HirDatabase, mut cb: impl FnMut(TypeAlias) -> Option<R>, ) -> Option<R> { associated_type_shorthand_candidates(db, self.in_type_ns()?, |_, _, id| cb(id.into())) } } /// Primary API to get semantic information, like types, from syntax trees. pub struct Semantics<'db, DB> { pub db: &'db DB, imp: SemanticsImpl<'db>, } pub struct SemanticsImpl<'db> { pub db: &'db dyn HirDatabase, s2d_cache: RefCell<SourceToDefCache>, expansion_info_cache: RefCell<FxHashMap<HirFileId, Option<ExpansionInfo>>>, cache: RefCell<FxHashMap<SyntaxNode, HirFileId>>, } impl<DB> fmt::Debug for Semantics<'_, DB> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "Semantics {{ ... }}") } } impl<'db, DB: HirDatabase> Semantics<'db, DB> { pub fn new(db: &DB) -> Semantics<DB> { let impl_ = SemanticsImpl::new(db); Semantics { db, imp: impl_ } } pub fn parse(&self, file_id: FileId) -> ast::SourceFile { self.imp.parse(file_id) } pub fn expand(&self, macro_call: &ast::MacroCall) -> Option<SyntaxNode> { self.imp.expand(macro_call) } pub fn speculative_expand( &self, actual_macro_call: &ast::MacroCall, hypothetical_args: &ast::TokenTree, token_to_map: SyntaxToken, ) -> Option<(SyntaxNode, SyntaxToken)> { self.imp.speculative_expand(actual_macro_call, hypothetical_args, token_to_map) } pub fn descend_into_macros(&self, token: SyntaxToken) -> SyntaxToken { self.imp.descend_into_macros(token) } pub fn descend_node_at_offset<N: ast::AstNode>( &self, node: &SyntaxNode, offset: TextSize, ) -> Option<N> { self.imp.descend_node_at_offset(node, offset).find_map(N::cast) } pub fn original_range(&self, node: &SyntaxNode) -> FileRange { self.imp.original_range(node) } pub fn diagnostics_display_range(&self, diagnostics: &dyn Diagnostic) -> FileRange { self.imp.diagnostics_display_range(diagnostics) } pub fn ancestors_with_macros(&self, node: SyntaxNode) -> impl Iterator<Item = SyntaxNode> + '_ { self.imp.ancestors_with_macros(node) } pub fn ancestors_at_offset_with_macros( &self, node: &SyntaxNode, offset: TextSize, ) -> impl Iterator<Item = SyntaxNode> + '_ { self.imp.ancestors_at_offset_with_macros(node, offset) } /// Find a AstNode by offset inside SyntaxNode, if it is inside *Macrofile*, /// search up until it is of the target AstNode type pub fn find_node_at_offset_with_macros<N: AstNode>( &self, node: &SyntaxNode, offset: TextSize, ) -> Option<N> { self.imp.ancestors_at_offset_with_macros(node, offset).find_map(N::cast) } /// Find a AstNode by offset inside SyntaxNode, if it is inside *MacroCall*, /// descend it and find again pub fn find_node_at_offset_with_descend<N: AstNode>( &self, node: &SyntaxNode, offset: TextSize, ) -> Option<N> { if let Some(it) = find_node_at_offset(&node, offset) { return Some(it); } self.imp.descend_node_at_offset(node, offset).find_map(N::cast) } pub fn type_of_expr(&self, expr: &ast::Expr) -> Option<Type> { self.imp.type_of_expr(expr) } pub fn type_of_pat(&self, pat: &ast::Pat) -> Option<Type> { self.imp.type_of_pat(pat) } pub fn type_of_self(&self, param: &ast::SelfParam) -> Option<Type> { self.imp.type_of_self(param) } pub fn resolve_method_call(&self, call: &ast::MethodCallExpr) -> Option<Function> { self.imp.resolve_method_call(call).map(Function::from) } pub fn resolve_method_call_as_callable(&self, call: &ast::MethodCallExpr) -> Option<Callable> { self.imp.resolve_method_call_as_callable(call) } pub fn resolve_field(&self, field: &ast::FieldExpr) -> Option<Field> { self.imp.resolve_field(field) } pub fn resolve_record_field( &self, field: &ast::RecordExprField, ) -> Option<(Field, Option<Local>)> { self.imp.resolve_record_field(field) } pub fn resolve_record_pat_field(&self, field: &ast::RecordPatField) -> Option<Field> { self.imp.resolve_record_pat_field(field) } pub fn resolve_macro_call(&self, macro_call: &ast::MacroCall) -> Option<MacroDef> { self.imp.resolve_macro_call(macro_call) } pub fn resolve_path(&self, path: &ast::Path) -> Option<PathResolution> { self.imp.resolve_path(path) } pub fn resolve_extern_crate(&self, extern_crate: &ast::ExternCrate) -> Option<Crate> { self.imp.resolve_extern_crate(extern_crate) } pub fn resolve_variant(&self, record_lit: ast::RecordExpr) -> Option<VariantDef> { self.imp.resolve_variant(record_lit).map(VariantDef::from) } pub fn resolve_bind_pat_to_const(&self, pat: &ast::IdentPat) -> Option<ModuleDef> { self.imp.resolve_bind_pat_to_const(pat) } // FIXME: use this instead? // pub fn resolve_name_ref(&self, name_ref: &ast::NameRef) -> Option<???>; pub fn record_literal_missing_fields(&self, literal: &ast::RecordExpr) -> Vec<(Field, Type)> { self.imp.record_literal_missing_fields(literal) } pub fn record_pattern_missing_fields(&self, pattern: &ast::RecordPat) -> Vec<(Field, Type)> { self.imp.record_pattern_missing_fields(pattern) } pub fn to_def<T: ToDef>(&self, src: &T) -> Option<T::Def> { let src = self.imp.find_file(src.syntax().clone()).with_value(src).cloned(); T::to_def(&self.imp, src) } pub fn to_module_def(&self, file: FileId) -> Option<Module> { self.imp.to_module_def(file) } pub fn scope(&self, node: &SyntaxNode) -> SemanticsScope<'db> { self.imp.scope(node) } pub fn scope_at_offset(&self, node: &SyntaxNode, offset: TextSize) -> SemanticsScope<'db> { self.imp.scope_at_offset(node, offset) } pub fn scope_for_def(&self, def: Trait) -> SemanticsScope<'db> { self.imp.scope_for_def(def) } pub fn assert_contains_node(&self, node: &SyntaxNode) { self.imp.assert_contains_node(node) } pub fn is_unsafe_method_call(&self, method_call_expr: &ast::MethodCallExpr) -> bool { self.imp.is_unsafe_method_call(method_call_expr) } pub fn is_unsafe_ref_expr(&self, ref_expr: &ast::RefExpr) -> bool { self.imp.is_unsafe_ref_expr(ref_expr) } pub fn is_unsafe_ident_pat(&self, ident_pat: &ast::IdentPat) -> bool { self.imp.is_unsafe_ident_pat(ident_pat) } } impl<'db> SemanticsImpl<'db> { fn new(db: &'db dyn HirDatabase) -> Self { SemanticsImpl { db, s2d_cache: Default::default(), cache: Default::default(), expansion_info_cache: Default::default(), } } fn parse(&self, file_id: FileId) -> ast::SourceFile { let tree = self.db.parse(file_id).tree(); self.cache(tree.syntax().clone(), file_id.into()); tree } fn expand(&self, macro_call: &ast::MacroCall) -> Option<SyntaxNode> { let macro_call = self.find_file(macro_call.syntax().clone()).with_value(macro_call); let sa = self.analyze2(macro_call.map(|it| it.syntax()), None); let file_id = sa.expand(self.db, macro_call)?; let node = self.db.parse_or_expand(file_id)?; self.cache(node.clone(), file_id); Some(node) } fn speculative_expand( &self, actual_macro_call: &ast::MacroCall, hypothetical_args: &ast::TokenTree, token_to_map: SyntaxToken, ) -> Option<(SyntaxNode, SyntaxToken)> { let macro_call = self.find_file(actual_macro_call.syntax().clone()).with_value(actual_macro_call); let sa = self.analyze2(macro_call.map(|it| it.syntax()), None); let krate = sa.resolver.krate()?; let macro_call_id = macro_call.as_call_id(self.db.upcast(), krate, |path| { sa.resolver.resolve_path_as_macro(self.db.upcast(), &path) })?; hir_expand::db::expand_hypothetical( self.db.upcast(), macro_call_id, hypothetical_args, token_to_map, ) } fn descend_into_macros(&self, token: SyntaxToken) -> SyntaxToken { let _p = profile::span("descend_into_macros"); let parent = token.parent(); let parent = self.find_file(parent); let sa = self.analyze2(parent.as_ref(), None); let token = successors(Some(parent.with_value(token)), |token| { self.db.check_canceled(); let macro_call = token.value.ancestors().find_map(ast::MacroCall::cast)?; let tt = macro_call.token_tree()?; if !tt.syntax().text_range().contains_range(token.value.text_range()) { return None; } let file_id = sa.expand(self.db, token.with_value(¯o_call))?; let token = self .expansion_info_cache .borrow_mut() .entry(file_id) .or_insert_with(|| file_id.expansion_info(self.db.upcast())) .as_ref()? .map_token_down(token.as_ref())?; self.cache(find_root(&token.value.parent()), token.file_id); Some(token) }) .last() .unwrap(); token.value } fn descend_node_at_offset( &self, node: &SyntaxNode, offset: TextSize, ) -> impl Iterator<Item = SyntaxNode> + '_ { // Handle macro token cases node.token_at_offset(offset) .map(|token| self.descend_into_macros(token)) .map(|it| self.ancestors_with_macros(it.parent())) .flatten() } fn original_range(&self, node: &SyntaxNode) -> FileRange { let node = self.find_file(node.clone()); node.as_ref().original_file_range(self.db.upcast()) } fn diagnostics_display_range(&self, diagnostics: &dyn Diagnostic) -> FileRange { let src = diagnostics.display_source(); let root = self.db.parse_or_expand(src.file_id).unwrap(); let node = src.value.to_node(&root); self.cache(root, src.file_id); src.with_value(&node).original_file_range(self.db.upcast()) } fn ancestors_with_macros(&self, node: SyntaxNode) -> impl Iterator<Item = SyntaxNode> + '_ { let node = self.find_file(node); node.ancestors_with_macros(self.db.upcast()).map(|it| it.value) } fn ancestors_at_offset_with_macros( &self, node: &SyntaxNode, offset: TextSize, ) -> impl Iterator<Item = SyntaxNode> + '_ { node.token_at_offset(offset) .map(|token| self.ancestors_with_macros(token.parent())) .kmerge_by(|node1, node2| node1.text_range().len() < node2.text_range().len()) } fn type_of_expr(&self, expr: &ast::Expr) -> Option<Type> { self.analyze(expr.syntax()).type_of_expr(self.db, &expr) } fn type_of_pat(&self, pat: &ast::Pat) -> Option<Type> { self.analyze(pat.syntax()).type_of_pat(self.db, &pat) } fn type_of_self(&self, param: &ast::SelfParam) -> Option<Type> { self.analyze(param.syntax()).type_of_self(self.db, ¶m) } fn resolve_method_call(&self, call: &ast::MethodCallExpr) -> Option<FunctionId> { self.analyze(call.syntax()).resolve_method_call(self.db, call) } fn resolve_method_call_as_callable(&self, call: &ast::MethodCallExpr) -> Option<Callable> { // FIXME: this erases Substs let func = self.resolve_method_call(call)?; let ty = self.db.value_ty(func.into()); let resolver = self.analyze(call.syntax()).resolver; let ty = Type::new_with_resolver(self.db, &resolver, ty.value)?; let mut res = ty.as_callable(self.db)?; res.is_bound_method = true; Some(res) } fn resolve_field(&self, field: &ast::FieldExpr) -> Option<Field> { self.analyze(field.syntax()).resolve_field(self.db, field) } fn resolve_record_field(&self, field: &ast::RecordExprField) -> Option<(Field, Option<Local>)> { self.analyze(field.syntax()).resolve_record_field(self.db, field) } fn resolve_record_pat_field(&self, field: &ast::RecordPatField) -> Option<Field> { self.analyze(field.syntax()).resolve_record_pat_field(self.db, field) } fn resolve_macro_call(&self, macro_call: &ast::MacroCall) -> Option<MacroDef> { let sa = self.analyze(macro_call.syntax()); let macro_call = self.find_file(macro_call.syntax().clone()).with_value(macro_call); sa.resolve_macro_call(self.db, macro_call) } fn resolve_path(&self, path: &ast::Path) -> Option<PathResolution> { self.analyze(path.syntax()).resolve_path(self.db, path) } fn resolve_extern_crate(&self, extern_crate: &ast::ExternCrate) -> Option<Crate> { let krate = self.scope(extern_crate.syntax()).krate()?; krate.dependencies(self.db).into_iter().find_map(|dep| { if dep.name == extern_crate.name_ref()?.as_name() { Some(dep.krate) } else { None } }) } fn resolve_variant(&self, record_lit: ast::RecordExpr) -> Option<VariantId> { self.analyze(record_lit.syntax()).resolve_variant(self.db, record_lit) } fn resolve_bind_pat_to_const(&self, pat: &ast::IdentPat) -> Option<ModuleDef> { self.analyze(pat.syntax()).resolve_bind_pat_to_const(self.db, pat) } fn record_literal_missing_fields(&self, literal: &ast::RecordExpr) -> Vec<(Field, Type)> { self.analyze(literal.syntax()) .record_literal_missing_fields(self.db, literal) .unwrap_or_default() } fn record_pattern_missing_fields(&self, pattern: &ast::RecordPat) -> Vec<(Field, Type)> { self.analyze(pattern.syntax()) .record_pattern_missing_fields(self.db, pattern) .unwrap_or_default() } fn with_ctx<F: FnOnce(&mut SourceToDefCtx) -> T, T>(&self, f: F) -> T { let mut cache = self.s2d_cache.borrow_mut(); let mut ctx = SourceToDefCtx { db: self.db, cache: &mut *cache }; f(&mut ctx) } fn to_module_def(&self, file: FileId) -> Option<Module> { self.with_ctx(|ctx| ctx.file_to_def(file)).map(Module::from) } fn scope(&self, node: &SyntaxNode) -> SemanticsScope<'db> { let node = self.find_file(node.clone()); let resolver = self.analyze2(node.as_ref(), None).resolver; SemanticsScope { db: self.db, file_id: node.file_id, resolver } } fn scope_at_offset(&self, node: &SyntaxNode, offset: TextSize) -> SemanticsScope<'db> { let node = self.find_file(node.clone()); let resolver = self.analyze2(node.as_ref(), Some(offset)).resolver; SemanticsScope { db: self.db, file_id: node.file_id, resolver } } fn scope_for_def(&self, def: Trait) -> SemanticsScope<'db> { let file_id = self.db.lookup_intern_trait(def.id).id.file_id; let resolver = def.id.resolver(self.db.upcast()); SemanticsScope { db: self.db, file_id, resolver } } fn analyze(&self, node: &SyntaxNode) -> SourceAnalyzer { let src = self.find_file(node.clone()); self.analyze2(src.as_ref(), None) } fn analyze2(&self, src: InFile<&SyntaxNode>, offset: Option<TextSize>) -> SourceAnalyzer { let _p = profile::span("Semantics::analyze2"); let container = match self.with_ctx(|ctx| ctx.find_container(src)) { Some(it) => it, None => return SourceAnalyzer::new_for_resolver(Resolver::default(), src), }; let resolver = match container { ChildContainer::DefWithBodyId(def) => { return SourceAnalyzer::new_for_body(self.db, def, src, offset) } ChildContainer::TraitId(it) => it.resolver(self.db.upcast()), ChildContainer::ImplId(it) => it.resolver(self.db.upcast()), ChildContainer::ModuleId(it) => it.resolver(self.db.upcast()), ChildContainer::EnumId(it) => it.resolver(self.db.upcast()), ChildContainer::VariantId(it) => it.resolver(self.db.upcast()), ChildContainer::TypeAliasId(it) => it.resolver(self.db.upcast()), ChildContainer::GenericDefId(it) => it.resolver(self.db.upcast()), }; SourceAnalyzer::new_for_resolver(resolver, src) } fn cache(&self, root_node: SyntaxNode, file_id: HirFileId) { assert!(root_node.parent().is_none()); let mut cache = self.cache.borrow_mut(); let prev = cache.insert(root_node, file_id); assert!(prev == None || prev == Some(file_id)) } fn assert_contains_node(&self, node: &SyntaxNode) { self.find_file(node.clone()); } fn lookup(&self, root_node: &SyntaxNode) -> Option<HirFileId> { let cache = self.cache.borrow(); cache.get(root_node).copied() } fn find_file(&self, node: SyntaxNode) -> InFile<SyntaxNode> { let root_node = find_root(&node); let file_id = self.lookup(&root_node).unwrap_or_else(|| { panic!( "\n\nFailed to lookup {:?} in this Semantics.\n\ Make sure to use only query nodes, derived from this instance of Semantics.\n\ root node: {:?}\n\ known nodes: {}\n\n", node, root_node, self.cache .borrow() .keys() .map(|it| format!("{:?}", it)) .collect::<Vec<_>>() .join(", ") ) }); InFile::new(file_id, node) } fn is_unsafe_method_call(&self, method_call_expr: &ast::MethodCallExpr) -> bool { method_call_expr .receiver() .and_then(|expr| { let field_expr = match expr { ast::Expr::FieldExpr(field_expr) => field_expr, _ => return None, }; let ty = self.type_of_expr(&field_expr.expr()?)?; if !ty.is_packed(self.db) { return None; } let func = self.resolve_method_call(&method_call_expr).map(Function::from)?; let res = match func.self_param(self.db)?.access(self.db) { Access::Shared | Access::Exclusive => true, Access::Owned => false, }; Some(res) }) .unwrap_or(false) } fn is_unsafe_ref_expr(&self, ref_expr: &ast::RefExpr) -> bool { ref_expr .expr() .and_then(|expr| { let field_expr = match expr { ast::Expr::FieldExpr(field_expr) => field_expr, _ => return None, }; let expr = field_expr.expr()?; self.type_of_expr(&expr) }) // Binding a reference to a packed type is possibly unsafe. .map(|ty| ty.is_packed(self.db)) .unwrap_or(false) // FIXME This needs layout computation to be correct. It will highlight // more than it should with the current implementation. } fn is_unsafe_ident_pat(&self, ident_pat: &ast::IdentPat) -> bool { if !ident_pat.ref_token().is_some() { return false; } ident_pat .syntax() .parent() .and_then(|parent| { // `IdentPat` can live under `RecordPat` directly under `RecordPatField` or // `RecordPatFieldList`. `RecordPatField` also lives under `RecordPatFieldList`, // so this tries to lookup the `IdentPat` anywhere along that structure to the // `RecordPat` so we can get the containing type. let record_pat = ast::RecordPatField::cast(parent.clone()) .and_then(|record_pat| record_pat.syntax().parent()) .or_else(|| Some(parent.clone())) .and_then(|parent| { ast::RecordPatFieldList::cast(parent)? .syntax() .parent() .and_then(ast::RecordPat::cast) }); // If this doesn't match a `RecordPat`, fallback to a `LetStmt` to see if // this is initialized from a `FieldExpr`. if let Some(record_pat) = record_pat { self.type_of_pat(&ast::Pat::RecordPat(record_pat)) } else if let Some(let_stmt) = ast::LetStmt::cast(parent) { let field_expr = match let_stmt.initializer()? { ast::Expr::FieldExpr(field_expr) => field_expr, _ => return None, }; self.type_of_expr(&field_expr.expr()?) } else { None } }) // Binding a reference to a packed type is possibly unsafe. .map(|ty| ty.is_packed(self.db)) .unwrap_or(false) } } pub trait ToDef: AstNode + Clone { type Def; fn to_def(sema: &SemanticsImpl, src: InFile<Self>) -> Option<Self::Def>; } macro_rules! to_def_impls { ($(($def:path, $ast:path, $meth:ident)),* ,) => {$( impl ToDef for $ast { type Def = $def; fn to_def(sema: &SemanticsImpl, src: InFile<Self>) -> Option<Self::Def> { sema.with_ctx(|ctx| ctx.$meth(src)).map(<$def>::from) } } )*} } to_def_impls![ (crate::Module, ast::Module, module_to_def), (crate::Struct, ast::Struct, struct_to_def), (crate::Enum, ast::Enum, enum_to_def), (crate::Union, ast::Union, union_to_def), (crate::Trait, ast::Trait, trait_to_def), (crate::ImplDef, ast::Impl, impl_to_def), (crate::TypeAlias, ast::TypeAlias, type_alias_to_def), (crate::Const, ast::Const, const_to_def), (crate::Static, ast::Static, static_to_def), (crate::Function, ast::Fn, fn_to_def), (crate::Field, ast::RecordField, record_field_to_def), (crate::Field, ast::TupleField, tuple_field_to_def), (crate::EnumVariant, ast::Variant, enum_variant_to_def), (crate::TypeParam, ast::TypeParam, type_param_to_def), (crate::MacroDef, ast::MacroCall, macro_call_to_def), // this one is dubious, not all calls are macros (crate::Local, ast::IdentPat, bind_pat_to_def), ]; fn find_root(node: &SyntaxNode) -> SyntaxNode { node.ancestors().last().unwrap() } /// `SemanticScope` encapsulates the notion of a scope (the set of visible /// names) at a particular program point. /// /// It is a bit tricky, as scopes do not really exist inside the compiler. /// Rather, the compiler directly computes for each reference the definition it /// refers to. It might transiently compute the explicit scope map while doing /// so, but, generally, this is not something left after the analysis. /// /// However, we do very much need explicit scopes for IDE purposes -- /// completion, at its core, lists the contents of the current scope. The notion /// of scope is also useful to answer questions like "what would be the meaning /// of this piece of code if we inserted it into this position?". /// /// So `SemanticsScope` is constructed from a specific program point (a syntax /// node or just a raw offset) and provides access to the set of visible names /// on a somewhat best-effort basis. /// /// Note that if you are wondering "what does this specific existing name mean?", /// you'd better use the `resolve_` family of methods. #[derive(Debug)] pub struct SemanticsScope<'a> { pub db: &'a dyn HirDatabase, file_id: HirFileId, resolver: Resolver, } impl<'a> SemanticsScope<'a> { pub fn module(&self) -> Option<Module> { Some(Module { id: self.resolver.module()? }) } pub fn krate(&self) -> Option<Crate> { Some(Crate { id: self.resolver.krate()? }) } /// Note: `FxHashSet<TraitId>` should be treated as an opaque type, passed into `Type // FIXME: rename to visible_traits to not repeat scope? pub fn traits_in_scope(&self) -> FxHashSet<TraitId> { let resolver = &self.resolver; resolver.traits_in_scope(self.db.upcast()) } pub fn process_all_names(&self, f: &mut dyn FnMut(Name, ScopeDef)) { let resolver = &self.resolver; resolver.process_all_names(self.db.upcast(), &mut |name, def| { let def = match def { resolver::ScopeDef::PerNs(it) => { let items = ScopeDef::all_items(it); for item in items { f(name.clone(), item); } return; } resolver::ScopeDef::ImplSelfType(it) => ScopeDef::ImplSelfType(it.into()), resolver::ScopeDef::AdtSelfType(it) => ScopeDef::AdtSelfType(it.into()), resolver::ScopeDef::GenericParam(id) => ScopeDef::GenericParam(TypeParam { id }), resolver::ScopeDef::Local(pat_id) => { let parent = resolver.body_owner().unwrap().into(); ScopeDef::Local(Local { parent, pat_id }) } }; f(name, def) }) } /// Resolve a path as-if it was written at the given scope. This is /// necessary a heuristic, as it doesn't take hygiene into account. pub fn speculative_resolve(&self, path: &ast::Path) -> Option<PathResolution> { let hygiene = Hygiene::new(self.db.upcast(), self.file_id); let path = Path::from_src(path.clone(), &hygiene)?; resolve_hir_path(self.db, &self.resolver, &path) } }