//! Maps *syntax* of various definitions to their semantic ids. //! //! This is a very interesting module, and, in some sense, can be considered the //! heart of the IDE parts of rust-analyzer. //! //! This module solves the following problem: //! //! Given a piece of syntax, find the corresponding semantic definition (def). //! //! This problem is a part of more-or-less every IDE feature implemented. Every //! IDE functionality (like goto to definition), conceptually starts with a //! specific cursor position in a file. Starting with this text offset, we first //! figure out what syntactic construct are we at: is this a pattern, an //! expression, an item definition. //! //! Knowing only the syntax gives us relatively little info. For example, //! looking at the syntax of the function we can realise that it is a part of an //! `impl` block, but we won't be able to tell what trait function the current //! function overrides, and whether it does that correctly. For that, we need to //! go from [`ast::Fn`] to [`crate::Function`], and that's exactly what this //! module does. //! //! As syntax trees are values and don't know their place of origin/identity, //! this module also requires [`InFile`] wrappers to understand which specific //! real or macro-expanded file the tree comes from. //! //! The actual algorithm to resolve syntax to def is curious in two aspects: //! //! * It is recursive //! * It uses the inverse algorithm (what is the syntax for this def?) //! //! Specifically, the algorithm goes like this: //! //! 1. Find the syntactic container for the syntax. For example, field's //! container is the struct, and structs container is a module. //! 2. Recursively get the def corresponding to container. //! 3. Ask the container def for all child defs. These child defs contain //! the answer and answer's siblings. //! 4. For each child def, ask for it's source. //! 5. The child def whose source is the syntax node we've started with //! is the answer. //! //! It's interesting that both Roslyn and Kotlin contain very similar code //! shape. //! //! Let's take a look at Roslyn: //! //! //! //! //! The `GetDeclaredType` takes `Syntax` as input, and returns `Symbol` as //! output. First, it retrieves a `Symbol` for parent `Syntax`: //! //! * https://sourceroslyn.io/#Microsoft.CodeAnalysis.CSharp/Compilation/SyntaxTreeSemanticModel.cs,1423 //! //! Then, it iterates parent symbol's children, looking for one which has the //! same text span as the original node: //! //! //! //! Now, let's look at Kotlin: //! //! //! //! This function starts with a syntax node (`KtExpression` is syntax, like all //! `Kt` nodes), and returns a def. It uses //! `getNonLocalContainingOrThisDeclaration` to get syntactic container for a //! current node. Then, `findSourceNonLocalFirDeclaration` gets `Fir` for this //! parent. Finally, `findElementIn` function traverses `Fir` children to find //! one with the same source we originally started with. //! //! One question is left though -- where does the recursion stops? This happens //! when we get to the file syntax node, which doesn't have a syntactic parent. //! In that case, we loop through all the crates that might contain this file //! and look for a module whose source is the given file. //! //! Note that the logic in this module is somewhat fundamentally imprecise -- //! due to conditional compilation and `#[path]` attributes, there's no //! injective mapping from syntax nodes to defs. This is not an edge case -- //! more or less every item in a `lib.rs` is a part of two distinct crates: a //! library with `--cfg test` and a library without. //! //! At the moment, we don't really handle this well and return the first answer //! that works. Ideally, we should first let the caller to pick a specific //! active crate for a given position, and then provide an API to resolve all //! syntax nodes against this specific crate. use base_db::FileId; use hir_def::{ child_by_source::ChildBySource, dyn_map::DynMap, expr::{LabelId, PatId}, keys::{self, Key}, ConstId, ConstParamId, DefWithBodyId, EnumId, EnumVariantId, FieldId, FunctionId, GenericDefId, ImplId, LifetimeParamId, ModuleId, StaticId, StructId, TraitId, TypeAliasId, TypeParamId, UnionId, VariantId, }; use hir_expand::{name::AsName, AstId, MacroCallId, MacroDefId, MacroDefKind}; use rustc_hash::FxHashMap; use smallvec::SmallVec; use stdx::impl_from; use syntax::{ ast::{self, NameOwner}, match_ast, AstNode, SyntaxNode, }; use crate::{db::HirDatabase, InFile}; pub(super) type SourceToDefCache = FxHashMap; pub(super) struct SourceToDefCtx<'a, 'b> { pub(super) db: &'b dyn HirDatabase, pub(super) cache: &'a mut SourceToDefCache, } impl SourceToDefCtx<'_, '_> { pub(super) fn file_to_def(&mut self, file: FileId) -> SmallVec<[ModuleId; 1]> { let _p = profile::span("SourceBinder::to_module_def"); let mut mods = SmallVec::new(); for &crate_id in self.db.relevant_crates(file).iter() { // FIXME: inner items let crate_def_map = self.db.crate_def_map(crate_id); mods.extend( crate_def_map .modules_for_file(file) .map(|local_id| crate_def_map.module_id(local_id)), ) } mods } pub(super) fn module_to_def(&mut self, src: InFile) -> Option { let _p = profile::span("module_to_def"); let parent_declaration = src .as_ref() .map(|it| it.syntax()) .cloned() .ancestors_with_macros(self.db.upcast()) .skip(1) .find_map(|it| { let m = ast::Module::cast(it.value.clone())?; Some(it.with_value(m)) }); let parent_module = match parent_declaration { Some(parent_declaration) => self.module_to_def(parent_declaration), None => { let file_id = src.file_id.original_file(self.db.upcast()); self.file_to_def(file_id).get(0).copied() } }?; let child_name = src.value.name()?.as_name(); let def_map = parent_module.def_map(self.db.upcast()); let child_id = *def_map[parent_module.local_id].children.get(&child_name)?; Some(def_map.module_id(child_id)) } pub(super) fn source_file_to_def(&mut self, src: InFile) -> Option { let _p = profile::span("source_file_to_def"); let file_id = src.file_id.original_file(self.db.upcast()); self.file_to_def(file_id).get(0).copied() } pub(super) fn trait_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::TRAIT) } pub(super) fn impl_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::IMPL) } pub(super) fn fn_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::FUNCTION) } pub(super) fn struct_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::STRUCT) } pub(super) fn enum_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::ENUM) } pub(super) fn union_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::UNION) } pub(super) fn static_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::STATIC) } pub(super) fn const_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::CONST) } pub(super) fn type_alias_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::TYPE_ALIAS) } pub(super) fn record_field_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::RECORD_FIELD) } pub(super) fn tuple_field_to_def(&mut self, src: InFile) -> Option { self.to_def(src, keys::TUPLE_FIELD) } pub(super) fn enum_variant_to_def( &mut self, src: InFile, ) -> Option { self.to_def(src, keys::VARIANT) } pub(super) fn bind_pat_to_def( &mut self, src: InFile, ) -> Option<(DefWithBodyId, PatId)> { let container = self.find_pat_or_label_container(src.as_ref().map(|it| it.syntax()))?; let (_body, source_map) = self.db.body_with_source_map(container); let src = src.map(ast::Pat::from); let pat_id = source_map.node_pat(src.as_ref())?; Some((container, pat_id)) } pub(super) fn self_param_to_def( &mut self, src: InFile, ) -> Option<(DefWithBodyId, PatId)> { let container = self.find_pat_or_label_container(src.as_ref().map(|it| it.syntax()))?; let (_body, source_map) = self.db.body_with_source_map(container); let pat_id = source_map.node_self_param(src.as_ref())?; Some((container, pat_id)) } pub(super) fn label_to_def( &mut self, src: InFile, ) -> Option<(DefWithBodyId, LabelId)> { let container = self.find_pat_or_label_container(src.as_ref().map(|it| it.syntax()))?; let (_body, source_map) = self.db.body_with_source_map(container); let label_id = source_map.node_label(src.as_ref())?; Some((container, label_id)) } pub(super) fn item_to_macro_call(&mut self, src: InFile) -> Option { let map = self.dyn_map(src.as_ref())?; map[keys::ATTR_MACRO].get(&src).copied() } fn to_def( &mut self, src: InFile, key: Key, ) -> Option { self.dyn_map(src.as_ref())?[key].get(&src).copied() } fn dyn_map(&mut self, src: InFile<&Ast>) -> Option<&DynMap> { let container = self.find_container(src.map(|it| it.syntax()))?; let db = self.db; let dyn_map = &*self.cache.entry(container).or_insert_with(|| container.child_by_source(db)); Some(dyn_map) } pub(super) fn type_param_to_def(&mut self, src: InFile) -> Option { let container: ChildContainer = self.find_generic_param_container(src.as_ref().map(|it| it.syntax()))?.into(); let db = self.db; let dyn_map = &*self.cache.entry(container).or_insert_with(|| container.child_by_source(db)); dyn_map[keys::TYPE_PARAM].get(&src).copied() } pub(super) fn lifetime_param_to_def( &mut self, src: InFile, ) -> Option { let container: ChildContainer = self.find_generic_param_container(src.as_ref().map(|it| it.syntax()))?.into(); let db = self.db; let dyn_map = &*self.cache.entry(container).or_insert_with(|| container.child_by_source(db)); dyn_map[keys::LIFETIME_PARAM].get(&src).copied() } pub(super) fn const_param_to_def( &mut self, src: InFile, ) -> Option { let container: ChildContainer = self.find_generic_param_container(src.as_ref().map(|it| it.syntax()))?.into(); let db = self.db; let dyn_map = &*self.cache.entry(container).or_insert_with(|| container.child_by_source(db)); dyn_map[keys::CONST_PARAM].get(&src).copied() } // FIXME: use DynMap as well? pub(super) fn macro_to_def(&mut self, src: InFile) -> Option { let file_ast_id = self.db.ast_id_map(src.file_id).ast_id(&src.value); let ast_id = AstId::new(src.file_id, file_ast_id.upcast()); let kind = MacroDefKind::Declarative(ast_id); let file_id = src.file_id.original_file(self.db.upcast()); let krate = self.file_to_def(file_id).get(0).copied()?.krate(); Some(MacroDefId { krate, kind, local_inner: false }) } pub(super) fn find_container(&mut self, src: InFile<&SyntaxNode>) -> Option { for container in src.cloned().ancestors_with_macros(self.db.upcast()).skip(1) { if let Some(res) = self.container_to_def(container) { return Some(res); } } let def = self.file_to_def(src.file_id.original_file(self.db.upcast())).get(0).copied()?; Some(def.into()) } fn container_to_def(&mut self, container: InFile) -> Option { let cont = match_ast! { match (container.value) { ast::Module(it) => { let def = self.module_to_def(container.with_value(it))?; def.into() }, ast::Trait(it) => { let def = self.trait_to_def(container.with_value(it))?; def.into() }, ast::Impl(it) => { let def = self.impl_to_def(container.with_value(it))?; def.into() }, ast::Fn(it) => { let def = self.fn_to_def(container.with_value(it))?; DefWithBodyId::from(def).into() }, ast::Struct(it) => { let def = self.struct_to_def(container.with_value(it))?; VariantId::from(def).into() }, ast::Enum(it) => { let def = self.enum_to_def(container.with_value(it))?; def.into() }, ast::Union(it) => { let def = self.union_to_def(container.with_value(it))?; VariantId::from(def).into() }, ast::Static(it) => { let def = self.static_to_def(container.with_value(it))?; DefWithBodyId::from(def).into() }, ast::Const(it) => { let def = self.const_to_def(container.with_value(it))?; DefWithBodyId::from(def).into() }, ast::TypeAlias(it) => { let def = self.type_alias_to_def(container.with_value(it))?; def.into() }, ast::Variant(it) => { let def = self.enum_variant_to_def(container.with_value(it))?; VariantId::from(def).into() }, _ => return None, } }; Some(cont) } fn find_generic_param_container(&mut self, src: InFile<&SyntaxNode>) -> Option { for container in src.cloned().ancestors_with_macros(self.db.upcast()).skip(1) { let res: GenericDefId = match_ast! { match (container.value) { ast::Fn(it) => self.fn_to_def(container.with_value(it))?.into(), ast::Struct(it) => self.struct_to_def(container.with_value(it))?.into(), ast::Enum(it) => self.enum_to_def(container.with_value(it))?.into(), ast::Trait(it) => self.trait_to_def(container.with_value(it))?.into(), ast::TypeAlias(it) => self.type_alias_to_def(container.with_value(it))?.into(), ast::Impl(it) => self.impl_to_def(container.with_value(it))?.into(), _ => continue, } }; return Some(res); } None } fn find_pat_or_label_container(&mut self, src: InFile<&SyntaxNode>) -> Option { for container in src.cloned().ancestors_with_macros(self.db.upcast()).skip(1) { let res: DefWithBodyId = match_ast! { match (container.value) { ast::Const(it) => self.const_to_def(container.with_value(it))?.into(), ast::Static(it) => self.static_to_def(container.with_value(it))?.into(), ast::Fn(it) => self.fn_to_def(container.with_value(it))?.into(), _ => continue, } }; return Some(res); } None } } #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub(crate) enum ChildContainer { DefWithBodyId(DefWithBodyId), ModuleId(ModuleId), TraitId(TraitId), ImplId(ImplId), EnumId(EnumId), VariantId(VariantId), TypeAliasId(TypeAliasId), /// XXX: this might be the same def as, for example an `EnumId`. However, /// here the children are generic parameters, and not, eg enum variants. GenericDefId(GenericDefId), } impl_from! { DefWithBodyId, ModuleId, TraitId, ImplId, EnumId, VariantId, TypeAliasId, GenericDefId for ChildContainer } impl ChildContainer { fn child_by_source(self, db: &dyn HirDatabase) -> DynMap { let db = db.upcast(); match self { ChildContainer::DefWithBodyId(it) => it.child_by_source(db), ChildContainer::ModuleId(it) => it.child_by_source(db), ChildContainer::TraitId(it) => it.child_by_source(db), ChildContainer::ImplId(it) => it.child_by_source(db), ChildContainer::EnumId(it) => it.child_by_source(db), ChildContainer::VariantId(it) => it.child_by_source(db), ChildContainer::TypeAliasId(_) => DynMap::default(), ChildContainer::GenericDefId(it) => it.child_by_source(db), } } }