//! HIR for references to types. Paths in these are not yet resolved. They can //! be directly created from an ast::TypeRef, without further queries. use hir_expand::{name::Name, AstId, InFile}; use std::convert::TryInto; use syntax::ast; use crate::{body::LowerCtx, intern::Interned, path::Path}; #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] pub enum Mutability { Shared, Mut, } impl Mutability { pub fn from_mutable(mutable: bool) -> Mutability { if mutable { Mutability::Mut } else { Mutability::Shared } } pub fn as_keyword_for_ref(self) -> &'static str { match self { Mutability::Shared => "", Mutability::Mut => "mut ", } } pub fn as_keyword_for_ptr(self) -> &'static str { match self { Mutability::Shared => "const ", Mutability::Mut => "mut ", } } } #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] pub enum Rawness { RawPtr, Ref, } impl Rawness { pub fn from_raw(is_raw: bool) -> Rawness { if is_raw { Rawness::RawPtr } else { Rawness::Ref } } } #[derive(Clone, PartialEq, Eq, Hash, Debug)] pub struct TraitRef { pub path: Path, } impl TraitRef { /// Converts an `ast::PathType` to a `hir::TraitRef`. pub(crate) fn from_ast(ctx: &LowerCtx, node: ast::Type) -> Option { // FIXME: Use `Path::from_src` match node { ast::Type::PathType(path) => { path.path().and_then(|it| ctx.lower_path(it)).map(|path| TraitRef { path }) } _ => None, } } } /// Compare ty::Ty /// /// Note: Most users of `TypeRef` that end up in the salsa database intern it using /// `Interned` to save space. But notably, nested `TypeRef`s are not interned, since that /// does not seem to save any noticeable amount of memory. #[derive(Clone, PartialEq, Eq, Hash, Debug)] pub enum TypeRef { Never, Placeholder, Tuple(Vec), Path(Path), RawPtr(Box, Mutability), Reference(Box, Option, Mutability), // FIXME: for full const generics, the latter element (length) here is going to have to be an // expression that is further lowered later in hir_ty. Array(Box, ConstScalar), Slice(Box), /// A fn pointer. Last element of the vector is the return type. Fn(Vec, bool /*varargs*/), // For ImplTrait(Vec>), DynTrait(Vec>), Macro(AstId), Error, } #[derive(Clone, PartialEq, Eq, Hash, Debug)] pub struct LifetimeRef { pub name: Name, } impl LifetimeRef { pub(crate) fn new_name(name: Name) -> Self { LifetimeRef { name } } pub(crate) fn new(lifetime: &ast::Lifetime) -> Self { LifetimeRef { name: Name::new_lifetime(lifetime) } } pub fn missing() -> LifetimeRef { LifetimeRef { name: Name::missing() } } } #[derive(Clone, PartialEq, Eq, Hash, Debug)] pub enum TypeBound { Path(Path), // ForLifetime(Vec, Path), FIXME ForLifetime Lifetime(LifetimeRef), Error, } impl TypeRef { /// Converts an `ast::TypeRef` to a `hir::TypeRef`. pub fn from_ast(ctx: &LowerCtx, node: ast::Type) -> Self { match node { ast::Type::ParenType(inner) => TypeRef::from_ast_opt(ctx, inner.ty()), ast::Type::TupleType(inner) => { TypeRef::Tuple(inner.fields().map(|it| TypeRef::from_ast(ctx, it)).collect()) } ast::Type::NeverType(..) => TypeRef::Never, ast::Type::PathType(inner) => { // FIXME: Use `Path::from_src` inner .path() .and_then(|it| ctx.lower_path(it)) .map(TypeRef::Path) .unwrap_or(TypeRef::Error) } ast::Type::PtrType(inner) => { let inner_ty = TypeRef::from_ast_opt(ctx, inner.ty()); let mutability = Mutability::from_mutable(inner.mut_token().is_some()); TypeRef::RawPtr(Box::new(inner_ty), mutability) } ast::Type::ArrayType(inner) => { // FIXME: This is a hack. We should probably reuse the machinery of // `hir_def::body::lower` to lower this into an `Expr` and then evaluate it at the // `hir_ty` level, which would allow knowing the type of: // let v: [u8; 2 + 2] = [0u8; 4]; let len = inner .expr() .map(ConstScalar::usize_from_literal_expr) .unwrap_or(ConstScalar::Unknown); TypeRef::Array(Box::new(TypeRef::from_ast_opt(ctx, inner.ty())), len) } ast::Type::SliceType(inner) => { TypeRef::Slice(Box::new(TypeRef::from_ast_opt(ctx, inner.ty()))) } ast::Type::RefType(inner) => { let inner_ty = TypeRef::from_ast_opt(ctx, inner.ty()); let lifetime = inner.lifetime().map(|lt| LifetimeRef::new(<)); let mutability = Mutability::from_mutable(inner.mut_token().is_some()); TypeRef::Reference(Box::new(inner_ty), lifetime, mutability) } ast::Type::InferType(_inner) => TypeRef::Placeholder, ast::Type::FnPtrType(inner) => { let ret_ty = inner .ret_type() .and_then(|rt| rt.ty()) .map(|it| TypeRef::from_ast(ctx, it)) .unwrap_or_else(|| TypeRef::Tuple(Vec::new())); let mut is_varargs = false; let mut params = if let Some(pl) = inner.param_list() { if let Some(param) = pl.params().last() { is_varargs = param.dotdotdot_token().is_some(); } pl.params().map(|p| p.ty()).map(|it| TypeRef::from_ast_opt(ctx, it)).collect() } else { Vec::new() }; params.push(ret_ty); TypeRef::Fn(params, is_varargs) } // for types are close enough for our purposes to the inner type for now... ast::Type::ForType(inner) => TypeRef::from_ast_opt(ctx, inner.ty()), ast::Type::ImplTraitType(inner) => { TypeRef::ImplTrait(type_bounds_from_ast(ctx, inner.type_bound_list())) } ast::Type::DynTraitType(inner) => { TypeRef::DynTrait(type_bounds_from_ast(ctx, inner.type_bound_list())) } ast::Type::MacroType(mt) => match mt.macro_call() { Some(mc) => ctx .ast_id(&mc) .map(|mc| TypeRef::Macro(InFile::new(ctx.file_id(), mc))) .unwrap_or(TypeRef::Error), None => TypeRef::Error, }, } } pub(crate) fn from_ast_opt(ctx: &LowerCtx, node: Option) -> Self { if let Some(node) = node { TypeRef::from_ast(ctx, node) } else { TypeRef::Error } } pub(crate) fn unit() -> TypeRef { TypeRef::Tuple(Vec::new()) } pub fn walk(&self, f: &mut impl FnMut(&TypeRef)) { go(self, f); fn go(type_ref: &TypeRef, f: &mut impl FnMut(&TypeRef)) { f(type_ref); match type_ref { TypeRef::Fn(types, _) | TypeRef::Tuple(types) => { types.iter().for_each(|t| go(t, f)) } TypeRef::RawPtr(type_ref, _) | TypeRef::Reference(type_ref, ..) | TypeRef::Array(type_ref, _) | TypeRef::Slice(type_ref) => go(type_ref, f), TypeRef::ImplTrait(bounds) | TypeRef::DynTrait(bounds) => { for bound in bounds { match bound.as_ref() { TypeBound::Path(path) => go_path(path, f), TypeBound::Lifetime(_) | TypeBound::Error => (), } } } TypeRef::Path(path) => go_path(path, f), TypeRef::Never | TypeRef::Placeholder | TypeRef::Macro(_) | TypeRef::Error => {} }; } fn go_path(path: &Path, f: &mut impl FnMut(&TypeRef)) { if let Some(type_ref) = path.type_anchor() { go(type_ref, f); } for segment in path.segments().iter() { if let Some(args_and_bindings) = segment.args_and_bindings { for arg in &args_and_bindings.args { match arg { crate::path::GenericArg::Type(type_ref) => { go(type_ref, f); } crate::path::GenericArg::Lifetime(_) => {} } } for binding in &args_and_bindings.bindings { if let Some(type_ref) = &binding.type_ref { go(type_ref, f); } for bound in &binding.bounds { match bound.as_ref() { TypeBound::Path(path) => go_path(path, f), TypeBound::Lifetime(_) | TypeBound::Error => (), } } } } } } } } pub(crate) fn type_bounds_from_ast( lower_ctx: &LowerCtx, type_bounds_opt: Option, ) -> Vec> { if let Some(type_bounds) = type_bounds_opt { type_bounds.bounds().map(|it| Interned::new(TypeBound::from_ast(lower_ctx, it))).collect() } else { vec![] } } impl TypeBound { pub(crate) fn from_ast(ctx: &LowerCtx, node: ast::TypeBound) -> Self { match node.kind() { ast::TypeBoundKind::PathType(path_type) => { let path = match path_type.path() { Some(p) => p, None => return TypeBound::Error, }; let path = match ctx.lower_path(path) { Some(p) => p, None => return TypeBound::Error, }; TypeBound::Path(path) } ast::TypeBoundKind::ForType(_) => TypeBound::Error, // FIXME ForType ast::TypeBoundKind::Lifetime(lifetime) => { TypeBound::Lifetime(LifetimeRef::new(&lifetime)) } } } pub fn as_path(&self) -> Option<&Path> { match self { TypeBound::Path(p) => Some(p), _ => None, } } } /// A concrete constant value #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum ConstScalar { // for now, we only support the trivial case of constant evaluating the length of an array // Note that this is u64 because the target usize may be bigger than our usize Usize(u64), /// Case of an unknown value that rustc might know but we don't // FIXME: this is a hack to get around chalk not being able to represent unevaluatable // constants // https://github.com/rust-analyzer/rust-analyzer/pull/8813#issuecomment-840679177 // https://rust-lang.zulipchat.com/#narrow/stream/144729-wg-traits/topic/Handling.20non.20evaluatable.20constants'.20equality/near/238386348 Unknown, } impl std::fmt::Display for ConstScalar { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> { match self { ConstScalar::Usize(us) => write!(fmt, "{}", us), ConstScalar::Unknown => write!(fmt, "_"), } } } impl ConstScalar { /// Gets a target usize out of the ConstScalar pub fn as_usize(&self) -> Option { match self { &ConstScalar::Usize(us) => Some(us), _ => None, } } // FIXME: as per the comments on `TypeRef::Array`, this evaluation should not happen at this // parse stage. fn usize_from_literal_expr(expr: ast::Expr) -> ConstScalar { match expr { ast::Expr::Literal(lit) => { let lkind = lit.kind(); match lkind { ast::LiteralKind::IntNumber(num) if num.suffix() == None || num.suffix() == Some("usize") => { num.value().and_then(|v| v.try_into().ok()) } _ => None, } } _ => None, } .map(ConstScalar::Usize) .unwrap_or(ConstScalar::Unknown) } }