//! In certain situations, rust automatically inserts derefs as necessary: for //! example, field accesses `foo.bar` still work when `foo` is actually a //! reference to a type with the field `bar`. This is an approximation of the //! logic in rustc (which lives in librustc_typeck/check/autoderef.rs). use std::iter::successors; use base_db::CrateId; use hir_def::lang_item::LangItemTarget; use hir_expand::name::name; use log::{info, warn}; use crate::{ db::HirDatabase, traits::{InEnvironment, Solution}, utils::generics, BoundVar, Canonical, DebruijnIndex, Obligation, Substs, TraitRef, Ty, }; const AUTODEREF_RECURSION_LIMIT: usize = 10; pub fn autoderef<'a>( db: &'a dyn HirDatabase, krate: Option, ty: InEnvironment>, ) -> impl Iterator> + 'a { let InEnvironment { value: ty, environment } = ty; successors(Some(ty), move |ty| { deref(db, krate?, InEnvironment { value: ty, environment: environment.clone() }) }) .take(AUTODEREF_RECURSION_LIMIT) } pub(crate) fn deref( db: &dyn HirDatabase, krate: CrateId, ty: InEnvironment<&Canonical>, ) -> Option> { if let Some(derefed) = ty.value.value.builtin_deref() { Some(Canonical { value: derefed, kinds: ty.value.kinds.clone() }) } else { deref_by_trait(db, krate, ty) } } fn deref_by_trait( db: &dyn HirDatabase, krate: CrateId, ty: InEnvironment<&Canonical>, ) -> Option> { let deref_trait = match db.lang_item(krate, "deref".into())? { LangItemTarget::TraitId(it) => it, _ => return None, }; let target = db.trait_data(deref_trait).associated_type_by_name(&name![Target])?; let generic_params = generics(db.upcast(), target.into()); if generic_params.len() != 1 { // the Target type + Deref trait should only have one generic parameter, // namely Deref's Self type return None; } // FIXME make the Canonical / bound var handling nicer let parameters = Substs::build_for_generics(&generic_params).push(ty.value.value.clone()).build(); // Check that the type implements Deref at all let trait_ref = TraitRef { trait_: deref_trait, substs: parameters.clone() }; let implements_goal = Canonical { kinds: ty.value.kinds.clone(), value: InEnvironment { value: Obligation::Trait(trait_ref), environment: ty.environment.clone(), }, }; if db.trait_solve(krate, implements_goal).is_none() { return None; } // Now do the assoc type projection let projection = super::traits::ProjectionPredicate { ty: Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, ty.value.kinds.len())), projection_ty: super::ProjectionTy { associated_ty: target, parameters }, }; let obligation = super::Obligation::Projection(projection); let in_env = InEnvironment { value: obligation, environment: ty.environment }; let canonical = Canonical::new(in_env, ty.value.kinds.iter().copied().chain(Some(super::TyKind::General))); let solution = db.trait_solve(krate, canonical)?; match &solution { Solution::Unique(vars) => { // FIXME: vars may contain solutions for any inference variables // that happened to be inside ty. To correctly handle these, we // would have to pass the solution up to the inference context, but // that requires a larger refactoring (especially if the deref // happens during method resolution). So for the moment, we just // check that we're not in the situation we're we would actually // need to handle the values of the additional variables, i.e. // they're just being 'passed through'. In the 'standard' case where // we have `impl Deref for Foo { Target = T }`, that should be // the case. // FIXME: if the trait solver decides to truncate the type, these // assumptions will be broken. We would need to properly introduce // new variables in that case for i in 1..vars.0.kinds.len() { if vars.0.value[i - 1] != Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, i - 1)) { warn!("complex solution for derefing {:?}: {:?}, ignoring", ty.value, solution); return None; } } Some(Canonical { value: vars.0.value[vars.0.value.len() - 1].clone(), kinds: vars.0.kinds.clone(), }) } Solution::Ambig(_) => { info!("Ambiguous solution for derefing {:?}: {:?}", ty.value, solution); None } } }