//! Various diagnostics for expressions that are collected together in one pass //! through the body using inference results: mismatched arg counts, missing //! fields, etc. use std::{cell::RefCell, sync::Arc}; use hir_def::{ expr::Statement, path::path, resolver::HasResolver, AssocItemId, DefWithBodyId, HasModule, }; use hir_expand::name; use rustc_hash::FxHashSet; use crate::{ db::HirDatabase, diagnostics::match_check::{ self, usefulness::{compute_match_usefulness, expand_pattern, MatchCheckCtx, PatternArena}, }, AdtId, InferenceResult, Interner, TyExt, TyKind, }; pub(crate) use hir_def::{ body::{Body, BodySourceMap}, expr::{Expr, ExprId, MatchArm, Pat, PatId}, LocalFieldId, VariantId, }; pub enum BodyValidationDiagnostic { RecordLiteralMissingFields { record_expr: ExprId, variant: VariantId, missed_fields: Vec, }, RecordPatMissingFields { record_pat: PatId, variant: VariantId, missed_fields: Vec, }, ReplaceFilterMapNextWithFindMap { method_call_expr: ExprId, }, MismatchedArgCount { call_expr: ExprId, expected: usize, found: usize, }, RemoveThisSemicolon { expr: ExprId, }, MissingOkOrSomeInTailExpr { expr: ExprId, required: String, }, MissingMatchArms { match_expr: ExprId, }, InternalBailedOut { pat: PatId, }, } impl BodyValidationDiagnostic { pub fn collect( db: &dyn HirDatabase, owner: DefWithBodyId, internal_diagnostics: bool, ) -> Vec { let _p = profile::span("BodyValidationDiagnostic::collect"); let infer = db.infer(owner); let mut validator = ExprValidator::new(owner, infer.clone()); validator.internal_diagnostics = internal_diagnostics; validator.validate_body(db); validator.diagnostics } } struct ExprValidator { owner: DefWithBodyId, infer: Arc, pub(super) diagnostics: Vec, internal_diagnostics: bool, } impl ExprValidator { fn new(owner: DefWithBodyId, infer: Arc) -> ExprValidator { ExprValidator { owner, infer, diagnostics: Vec::new(), internal_diagnostics: false } } fn validate_body(&mut self, db: &dyn HirDatabase) { self.check_for_filter_map_next(db); let body = db.body(self.owner); for (id, expr) in body.exprs.iter() { if let Some((variant, missed_fields, true)) = record_literal_missing_fields(db, &self.infer, id, expr) { self.diagnostics.push(BodyValidationDiagnostic::RecordLiteralMissingFields { record_expr: id, variant, missed_fields, }); } match expr { Expr::Match { expr, arms } => { self.validate_match(id, *expr, arms, db, self.infer.clone()); } Expr::Call { .. } | Expr::MethodCall { .. } => { self.validate_call(db, id, expr); } _ => {} } } for (id, pat) in body.pats.iter() { if let Some((variant, missed_fields, true)) = record_pattern_missing_fields(db, &self.infer, id, pat) { self.diagnostics.push(BodyValidationDiagnostic::RecordPatMissingFields { record_pat: id, variant, missed_fields, }); } } let body_expr = &body[body.body_expr]; if let Expr::Block { statements, tail, .. } = body_expr { if let Some(t) = tail { self.validate_results_in_tail_expr(body.body_expr, *t, db); } else if let Some(Statement::Expr { expr: id, .. }) = statements.last() { self.validate_missing_tail_expr(body.body_expr, *id); } } } fn check_for_filter_map_next(&mut self, db: &dyn HirDatabase) { // Find the FunctionIds for Iterator::filter_map and Iterator::next let iterator_path = path![core::iter::Iterator]; let resolver = self.owner.resolver(db.upcast()); let iterator_trait_id = match resolver.resolve_known_trait(db.upcast(), &iterator_path) { Some(id) => id, None => return, }; let iterator_trait_items = &db.trait_data(iterator_trait_id).items; let filter_map_function_id = match iterator_trait_items.iter().find(|item| item.0 == name![filter_map]) { Some((_, AssocItemId::FunctionId(id))) => id, _ => return, }; let next_function_id = match iterator_trait_items.iter().find(|item| item.0 == name![next]) { Some((_, AssocItemId::FunctionId(id))) => id, _ => return, }; // Search function body for instances of .filter_map(..).next() let body = db.body(self.owner); let mut prev = None; for (id, expr) in body.exprs.iter() { if let Expr::MethodCall { receiver, .. } = expr { let function_id = match self.infer.method_resolution(id) { Some((id, _)) => id, None => continue, }; if function_id == *filter_map_function_id { prev = Some(id); continue; } if function_id == *next_function_id { if let Some(filter_map_id) = prev { if *receiver == filter_map_id { self.diagnostics.push( BodyValidationDiagnostic::ReplaceFilterMapNextWithFindMap { method_call_expr: id, }, ); } } } } prev = None; } } fn validate_call(&mut self, db: &dyn HirDatabase, call_id: ExprId, expr: &Expr) { // Check that the number of arguments matches the number of parameters. // FIXME: Due to shortcomings in the current type system implementation, only emit this // diagnostic if there are no type mismatches in the containing function. if self.infer.expr_type_mismatches().next().is_some() { return; } let is_method_call = matches!(expr, Expr::MethodCall { .. }); let (sig, args) = match expr { Expr::Call { callee, args } => { let callee = &self.infer.type_of_expr[*callee]; let sig = match callee.callable_sig(db) { Some(sig) => sig, None => return, }; (sig, args.clone()) } Expr::MethodCall { receiver, args, .. } => { let mut args = args.clone(); args.insert(0, *receiver); let receiver = &self.infer.type_of_expr[*receiver]; if receiver.strip_references().is_unknown() { // if the receiver is of unknown type, it's very likely we // don't know enough to correctly resolve the method call. // This is kind of a band-aid for #6975. return; } let (callee, subst) = match self.infer.method_resolution(call_id) { Some(it) => it, None => return, }; let sig = db.callable_item_signature(callee.into()).substitute(&Interner, &subst); (sig, args) } _ => return, }; if sig.is_varargs { return; } let params = sig.params(); let mut param_count = params.len(); let mut arg_count = args.len(); if arg_count != param_count { if is_method_call { param_count -= 1; arg_count -= 1; } self.diagnostics.push(BodyValidationDiagnostic::MismatchedArgCount { call_expr: call_id, expected: param_count, found: arg_count, }); } } fn validate_match( &mut self, id: ExprId, match_expr: ExprId, arms: &[MatchArm], db: &dyn HirDatabase, infer: Arc, ) { let (body, source_map): (Arc, Arc) = db.body_with_source_map(self.owner); let match_expr_ty = if infer.type_of_expr[match_expr].is_unknown() { return; } else { &infer.type_of_expr[match_expr] }; let pattern_arena = RefCell::new(PatternArena::new()); let mut m_arms = Vec::new(); let mut has_lowering_errors = false; for arm in arms { if let Some(pat_ty) = infer.type_of_pat.get(arm.pat) { // We only include patterns whose type matches the type // of the match expression. If we had a InvalidMatchArmPattern // diagnostic or similar we could raise that in an else // block here. // // When comparing the types, we also have to consider that rustc // will automatically de-reference the match expression type if // necessary. // // FIXME we should use the type checker for this. if (pat_ty == match_expr_ty || match_expr_ty .as_reference() .map(|(match_expr_ty, ..)| match_expr_ty == pat_ty) .unwrap_or(false)) && types_of_subpatterns_do_match(arm.pat, &body, &infer) { // If we had a NotUsefulMatchArm diagnostic, we could // check the usefulness of each pattern as we added it // to the matrix here. let m_arm = match_check::MatchArm { pat: self.lower_pattern( arm.pat, &mut pattern_arena.borrow_mut(), db, &body, &mut has_lowering_errors, ), has_guard: arm.guard.is_some(), }; m_arms.push(m_arm); if !has_lowering_errors { continue; } } } // If we can't resolve the type of a pattern, or the pattern type doesn't // fit the match expression, we skip this diagnostic. Skipping the entire // diagnostic rather than just not including this match arm is preferred // to avoid the chance of false positives. if self.internal_diagnostics { self.diagnostics.push(BodyValidationDiagnostic::InternalBailedOut { pat: arm.pat }) } return; } let cx = MatchCheckCtx { module: self.owner.module(db.upcast()), match_expr, infer: &infer, db, pattern_arena: &pattern_arena, panic_context: &|| { use syntax::AstNode; let match_expr_text = source_map .expr_syntax(match_expr) .ok() .and_then(|scrutinee_sptr| { let root = scrutinee_sptr.file_syntax(db.upcast()); scrutinee_sptr.value.to_node(&root).syntax().parent() }) .map(|node| node.to_string()); format!( "expression:\n{}", match_expr_text.as_deref().unwrap_or("") ) }, }; let report = compute_match_usefulness(&cx, &m_arms); // FIXME Report unreacheble arms // https://github.com/rust-lang/rust/blob/25c15cdbe/compiler/rustc_mir_build/src/thir/pattern/check_match.rs#L200-L201 let witnesses = report.non_exhaustiveness_witnesses; // FIXME Report witnesses // eprintln!("compute_match_usefulness(..) -> {:?}", &witnesses); if !witnesses.is_empty() { self.diagnostics.push(BodyValidationDiagnostic::MissingMatchArms { match_expr: id }); } } fn lower_pattern( &self, pat: PatId, pattern_arena: &mut PatternArena, db: &dyn HirDatabase, body: &Body, have_errors: &mut bool, ) -> match_check::PatId { let mut patcx = match_check::PatCtxt::new(db, &self.infer, body); let pattern = patcx.lower_pattern(pat); let pattern = pattern_arena.alloc(expand_pattern(pattern)); if !patcx.errors.is_empty() { *have_errors = true; } pattern } fn validate_results_in_tail_expr(&mut self, body_id: ExprId, id: ExprId, db: &dyn HirDatabase) { // the mismatch will be on the whole block currently let mismatch = match self.infer.type_mismatch_for_expr(body_id) { Some(m) => m, None => return, }; let core_result_path = path![core::result::Result]; let core_option_path = path![core::option::Option]; let resolver = self.owner.resolver(db.upcast()); let core_result_enum = match resolver.resolve_known_enum(db.upcast(), &core_result_path) { Some(it) => it, _ => return, }; let core_option_enum = match resolver.resolve_known_enum(db.upcast(), &core_option_path) { Some(it) => it, _ => return, }; let (params, required) = match mismatch.expected.kind(&Interner) { TyKind::Adt(AdtId(hir_def::AdtId::EnumId(enum_id)), ref parameters) if *enum_id == core_result_enum => { (parameters, "Ok".to_string()) } TyKind::Adt(AdtId(hir_def::AdtId::EnumId(enum_id)), ref parameters) if *enum_id == core_option_enum => { (parameters, "Some".to_string()) } _ => return, }; if params.len(&Interner) > 0 && params.at(&Interner, 0).ty(&Interner) == Some(&mismatch.actual) { self.diagnostics .push(BodyValidationDiagnostic::MissingOkOrSomeInTailExpr { expr: id, required }); } } fn validate_missing_tail_expr(&mut self, body_id: ExprId, possible_tail_id: ExprId) { let mismatch = match self.infer.type_mismatch_for_expr(body_id) { Some(m) => m, None => return, }; let possible_tail_ty = match self.infer.type_of_expr.get(possible_tail_id) { Some(ty) => ty, None => return, }; if !mismatch.actual.is_unit() || mismatch.expected != *possible_tail_ty { return; } self.diagnostics .push(BodyValidationDiagnostic::RemoveThisSemicolon { expr: possible_tail_id }); } } pub fn record_literal_missing_fields( db: &dyn HirDatabase, infer: &InferenceResult, id: ExprId, expr: &Expr, ) -> Option<(VariantId, Vec, /*exhaustive*/ bool)> { let (fields, exhaustive) = match expr { Expr::RecordLit { path: _, fields, spread } => (fields, spread.is_none()), _ => return None, }; let variant_def = infer.variant_resolution_for_expr(id)?; if let VariantId::UnionId(_) = variant_def { return None; } let variant_data = variant_def.variant_data(db.upcast()); let specified_fields: FxHashSet<_> = fields.iter().map(|f| &f.name).collect(); let missed_fields: Vec = variant_data .fields() .iter() .filter_map(|(f, d)| if specified_fields.contains(&d.name) { None } else { Some(f) }) .collect(); if missed_fields.is_empty() { return None; } Some((variant_def, missed_fields, exhaustive)) } pub fn record_pattern_missing_fields( db: &dyn HirDatabase, infer: &InferenceResult, id: PatId, pat: &Pat, ) -> Option<(VariantId, Vec, /*exhaustive*/ bool)> { let (fields, exhaustive) = match pat { Pat::Record { path: _, args, ellipsis } => (args, !ellipsis), _ => return None, }; let variant_def = infer.variant_resolution_for_pat(id)?; if let VariantId::UnionId(_) = variant_def { return None; } let variant_data = variant_def.variant_data(db.upcast()); let specified_fields: FxHashSet<_> = fields.iter().map(|f| &f.name).collect(); let missed_fields: Vec = variant_data .fields() .iter() .filter_map(|(f, d)| if specified_fields.contains(&d.name) { None } else { Some(f) }) .collect(); if missed_fields.is_empty() { return None; } Some((variant_def, missed_fields, exhaustive)) } fn types_of_subpatterns_do_match(pat: PatId, body: &Body, infer: &InferenceResult) -> bool { fn walk(pat: PatId, body: &Body, infer: &InferenceResult, has_type_mismatches: &mut bool) { match infer.type_mismatch_for_pat(pat) { Some(_) => *has_type_mismatches = true, None => { body[pat].walk_child_pats(|subpat| walk(subpat, body, infer, has_type_mismatches)) } } } let mut has_type_mismatches = false; walk(pat, body, infer, &mut has_type_mismatches); !has_type_mismatches }