//! FIXME: write short doc here use std::{borrow::Cow, fmt}; use crate::{ db::HirDatabase, utils::generics, ApplicationTy, CallableDefId, FnSig, GenericPredicate, Lifetime, Obligation, OpaqueTy, OpaqueTyId, ProjectionTy, Substs, TraitRef, Ty, TypeCtor, }; use arrayvec::ArrayVec; use hir_def::{ db::DefDatabase, find_path, generics::TypeParamProvenance, item_scope::ItemInNs, AdtId, AssocContainerId, HasModule, Lookup, ModuleId, TraitId, }; use hir_expand::name::Name; pub struct HirFormatter<'a> { pub db: &'a dyn HirDatabase, fmt: &'a mut dyn fmt::Write, buf: String, curr_size: usize, pub(crate) max_size: Option, omit_verbose_types: bool, display_target: DisplayTarget, } pub trait HirDisplay { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError>; /// Returns a `Display`able type that is human-readable. fn into_displayable<'a>( &'a self, db: &'a dyn HirDatabase, max_size: Option, omit_verbose_types: bool, display_target: DisplayTarget, ) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size, omit_verbose_types, display_target } } /// Returns a `Display`able type that is human-readable. /// Use this for showing types to the user (e.g. diagnostics) fn display<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size: None, omit_verbose_types: false, display_target: DisplayTarget::Diagnostics, } } /// Returns a `Display`able type that is human-readable and tries to be succinct. /// Use this for showing types to the user where space is constrained (e.g. doc popups) fn display_truncated<'a>( &'a self, db: &'a dyn HirDatabase, max_size: Option, ) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size, omit_verbose_types: true, display_target: DisplayTarget::Diagnostics, } } /// Returns a String representation of `self` that can be inserted into the given module. /// Use this when generating code (e.g. assists) fn display_source_code<'a>( &'a self, db: &'a dyn HirDatabase, module_id: ModuleId, ) -> Result { let mut result = String::new(); match self.hir_fmt(&mut HirFormatter { db, fmt: &mut result, buf: String::with_capacity(20), curr_size: 0, max_size: None, omit_verbose_types: false, display_target: DisplayTarget::SourceCode { module_id }, }) { Ok(()) => {} Err(HirDisplayError::FmtError) => panic!("Writing to String can't fail!"), Err(HirDisplayError::DisplaySourceCodeError(e)) => return Err(e), }; Ok(result) } /// Returns a String representation of `self` for test purposes fn display_test<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self> where Self: Sized, { HirDisplayWrapper { db, t: self, max_size: None, omit_verbose_types: false, display_target: DisplayTarget::Test, } } } impl<'a> HirFormatter<'a> { pub fn write_joined( &mut self, iter: impl IntoIterator, sep: &str, ) -> Result<(), HirDisplayError> { let mut first = true; for e in iter { if !first { write!(self, "{}", sep)?; } first = false; e.hir_fmt(self)?; } Ok(()) } /// This allows using the `write!` macro directly with a `HirFormatter`. pub fn write_fmt(&mut self, args: fmt::Arguments) -> Result<(), HirDisplayError> { // We write to a buffer first to track output size self.buf.clear(); fmt::write(&mut self.buf, args)?; self.curr_size += self.buf.len(); // Then we write to the internal formatter from the buffer self.fmt.write_str(&self.buf).map_err(HirDisplayError::from) } pub fn should_truncate(&self) -> bool { if let Some(max_size) = self.max_size { self.curr_size >= max_size } else { false } } pub fn omit_verbose_types(&self) -> bool { self.omit_verbose_types } } #[derive(Clone, Copy)] pub enum DisplayTarget { /// Display types for inlays, doc popups, autocompletion, etc... /// Showing `{unknown}` or not qualifying paths is fine here. /// There's no reason for this to fail. Diagnostics, /// Display types for inserting them in source files. /// The generated code should compile, so paths need to be qualified. SourceCode { module_id: ModuleId }, /// Only for test purpose to keep real types Test, } impl DisplayTarget { fn is_source_code(&self) -> bool { matches!(self, Self::SourceCode { .. }) } fn is_test(&self) -> bool { matches!(self, Self::Test) } } #[derive(Debug)] pub enum DisplaySourceCodeError { PathNotFound, UnknownType, } pub enum HirDisplayError { /// Errors that can occur when generating source code DisplaySourceCodeError(DisplaySourceCodeError), /// `FmtError` is required to be compatible with std::fmt::Display FmtError, } impl From for HirDisplayError { fn from(_: fmt::Error) -> Self { Self::FmtError } } pub struct HirDisplayWrapper<'a, T> { db: &'a dyn HirDatabase, t: &'a T, max_size: Option, omit_verbose_types: bool, display_target: DisplayTarget, } impl<'a, T> fmt::Display for HirDisplayWrapper<'a, T> where T: HirDisplay, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.t.hir_fmt(&mut HirFormatter { db: self.db, fmt: f, buf: String::with_capacity(20), curr_size: 0, max_size: self.max_size, omit_verbose_types: self.omit_verbose_types, display_target: self.display_target, }) { Ok(()) => Ok(()), Err(HirDisplayError::FmtError) => Err(fmt::Error), Err(HirDisplayError::DisplaySourceCodeError(_)) => { // This should never happen panic!("HirDisplay failed when calling Display::fmt!") } } } } const TYPE_HINT_TRUNCATION: &str = "…"; impl HirDisplay for &Ty { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { HirDisplay::hir_fmt(*self, f) } } impl HirDisplay for ApplicationTy { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } match self.ctor { TypeCtor::Bool => write!(f, "bool")?, TypeCtor::Char => write!(f, "char")?, TypeCtor::Int(t) => write!(f, "{}", t)?, TypeCtor::Float(t) => write!(f, "{}", t)?, TypeCtor::Str => write!(f, "str")?, TypeCtor::Slice => { let t = self.parameters.as_single(); write!(f, "[")?; t.hir_fmt(f)?; write!(f, "]")?; } TypeCtor::Array => { let t = self.parameters.as_single(); write!(f, "[")?; t.hir_fmt(f)?; write!(f, "; _]")?; } TypeCtor::RawPtr(m) | TypeCtor::Ref(m) => { let t = self.parameters.as_single(); let ty_display = t.into_displayable(f.db, f.max_size, f.omit_verbose_types, f.display_target); if matches!(self.ctor, TypeCtor::RawPtr(_)) { write!(f, "*{}", m.as_keyword_for_ptr())?; } else { write!(f, "&{}", m.as_keyword_for_ref())?; } let datas; let predicates = match t { Ty::Dyn(predicates) if predicates.len() > 1 => { Cow::Borrowed(predicates.as_ref()) } &Ty::Opaque(OpaqueTy { opaque_ty_id: OpaqueTyId::ReturnTypeImplTrait(func, idx), ref parameters, }) => { datas = f.db.return_type_impl_traits(func).expect("impl trait id without data"); let data = (*datas) .as_ref() .map(|rpit| rpit.impl_traits[idx as usize].bounds.clone()); let bounds = data.subst(parameters); Cow::Owned(bounds.value) } _ => Cow::Borrowed(&[][..]), }; if let [GenericPredicate::Implemented(trait_ref), _] = predicates.as_ref() { let trait_ = trait_ref.trait_; if fn_traits(f.db.upcast(), trait_).any(|it| it == trait_) { return write!(f, "{}", ty_display); } } if predicates.len() > 1 { write!(f, "(")?; write!(f, "{}", ty_display)?; write!(f, ")")?; } else { write!(f, "{}", ty_display)?; } } TypeCtor::Never => write!(f, "!")?, TypeCtor::Tuple { .. } => { let ts = &self.parameters; if ts.len() == 1 { write!(f, "(")?; ts[0].hir_fmt(f)?; write!(f, ",)")?; } else { write!(f, "(")?; f.write_joined(&*ts.0, ", ")?; write!(f, ")")?; } } TypeCtor::FnPtr { is_varargs, .. } => { let sig = FnSig::from_fn_ptr_substs(&self.parameters, is_varargs); sig.hir_fmt(f)?; } TypeCtor::FnDef(def) => { let sig = f.db.callable_item_signature(def).subst(&self.parameters); match def { CallableDefId::FunctionId(ff) => { write!(f, "fn {}", f.db.function_data(ff).name)? } CallableDefId::StructId(s) => write!(f, "{}", f.db.struct_data(s).name)?, CallableDefId::EnumVariantId(e) => { write!(f, "{}", f.db.enum_data(e.parent).variants[e.local_id].name)? } }; if self.parameters.len() > 0 { let generics = generics(f.db.upcast(), def.into()); let (parent_params, self_param, type_params, _impl_trait_params) = generics.provenance_split(); let total_len = parent_params + self_param + type_params; // We print all params except implicit impl Trait params. Still a bit weird; should we leave out parent and self? if total_len > 0 { write!(f, "<")?; f.write_joined(&self.parameters.0[..total_len], ", ")?; write!(f, ">")?; } } write!(f, "(")?; f.write_joined(sig.params(), ", ")?; write!(f, ")")?; let ret = sig.ret(); if *ret != Ty::unit() { let ret_display = ret.into_displayable( f.db, f.max_size, f.omit_verbose_types, f.display_target, ); write!(f, " -> {}", ret_display)?; } } TypeCtor::Adt(def_id) => { match f.display_target { DisplayTarget::Diagnostics | DisplayTarget::Test => { let name = match def_id { AdtId::StructId(it) => f.db.struct_data(it).name.clone(), AdtId::UnionId(it) => f.db.union_data(it).name.clone(), AdtId::EnumId(it) => f.db.enum_data(it).name.clone(), }; write!(f, "{}", name)?; } DisplayTarget::SourceCode { module_id } => { if let Some(path) = find_path::find_path( f.db.upcast(), ItemInNs::Types(def_id.into()), module_id, ) { write!(f, "{}", path)?; } else { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::PathNotFound, )); } } } if self.parameters.len() > 0 { let parameters_to_write = if f.display_target.is_source_code() || f.omit_verbose_types() { match self .ctor .as_generic_def() .map(|generic_def_id| f.db.generic_defaults(generic_def_id)) .filter(|defaults| !defaults.is_empty()) { None => self.parameters.0.as_ref(), Some(default_parameters) => { let mut default_from = 0; for (i, parameter) in self.parameters.iter().enumerate() { match (parameter, default_parameters.get(i)) { (&Ty::Unknown, _) | (_, None) => { default_from = i + 1; } (_, Some(default_parameter)) => { let actual_default = default_parameter .clone() .subst(&self.parameters.prefix(i)); if parameter != &actual_default { default_from = i + 1; } } } } &self.parameters.0[0..default_from] } } } else { self.parameters.0.as_ref() }; if !parameters_to_write.is_empty() { write!(f, "<")?; f.write_joined(parameters_to_write, ", ")?; write!(f, ">")?; } } } TypeCtor::AssociatedType(type_alias) => { let trait_ = match type_alias.lookup(f.db.upcast()).container { AssocContainerId::TraitId(it) => it, _ => panic!("not an associated type"), }; let trait_ = f.db.trait_data(trait_); let type_alias_data = f.db.type_alias_data(type_alias); // Use placeholder associated types when the target is test (https://rust-lang.github.io/chalk/book/clauses/type_equality.html#placeholder-associated-types) if f.display_target.is_test() { write!(f, "{}::{}", trait_.name, type_alias_data.name)?; if self.parameters.len() > 0 { write!(f, "<")?; f.write_joined(&*self.parameters.0, ", ")?; write!(f, ">")?; } } else { let projection_ty = ProjectionTy { associated_ty: type_alias, parameters: self.parameters.clone(), }; projection_ty.hir_fmt(f)?; } } TypeCtor::ForeignType(type_alias) => { let type_alias = f.db.type_alias_data(type_alias); write!(f, "{}", type_alias.name)?; if self.parameters.len() > 0 { write!(f, "<")?; f.write_joined(&*self.parameters.0, ", ")?; write!(f, ">")?; } } TypeCtor::OpaqueType(opaque_ty_id) => { match opaque_ty_id { OpaqueTyId::ReturnTypeImplTrait(func, idx) => { let datas = f.db.return_type_impl_traits(func).expect("impl trait id without data"); let data = (*datas) .as_ref() .map(|rpit| rpit.impl_traits[idx as usize].bounds.clone()); let bounds = data.subst(&self.parameters); write!(f, "impl ")?; write_bounds_like_dyn_trait(&bounds.value, f)?; // FIXME: it would maybe be good to distinguish this from the alias type (when debug printing), and to show the substitution } OpaqueTyId::AsyncBlockTypeImplTrait(..) => { write!(f, "impl Future")?; } } } TypeCtor::Closure { .. } => { let sig = self.parameters[0].callable_sig(f.db); if let Some(sig) = sig { if sig.params().is_empty() { write!(f, "||")?; } else if f.omit_verbose_types() { write!(f, "|{}|", TYPE_HINT_TRUNCATION)?; } else { write!(f, "|")?; f.write_joined(sig.params(), ", ")?; write!(f, "|")?; }; let ret_display = sig.ret().into_displayable( f.db, f.max_size, f.omit_verbose_types, f.display_target, ); write!(f, " -> {}", ret_display)?; } else { write!(f, "{{closure}}")?; } } } Ok(()) } } impl HirDisplay for ProjectionTy { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } let trait_ = f.db.trait_data(self.trait_(f.db)); let first_parameter = self.parameters[0].into_displayable( f.db, f.max_size, f.omit_verbose_types, f.display_target, ); write!(f, "<{} as {}", first_parameter, trait_.name)?; if self.parameters.len() > 1 { write!(f, "<")?; f.write_joined(&self.parameters[1..], ", ")?; write!(f, ">")?; } write!(f, ">::{}", f.db.type_alias_data(self.associated_ty).name)?; Ok(()) } } impl HirDisplay for Ty { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } match self { Ty::Apply(a_ty) => a_ty.hir_fmt(f)?, Ty::Projection(p_ty) => p_ty.hir_fmt(f)?, Ty::Placeholder(id) => { let generics = generics(f.db.upcast(), id.parent); let param_data = &generics.params.types[id.local_id]; match param_data.provenance { TypeParamProvenance::TypeParamList | TypeParamProvenance::TraitSelf => { write!(f, "{}", param_data.name.clone().unwrap_or_else(Name::missing))? } TypeParamProvenance::ArgumentImplTrait => { write!(f, "impl ")?; let bounds = f.db.generic_predicates_for_param(*id); let substs = Substs::type_params_for_generics(&generics); write_bounds_like_dyn_trait( &bounds.iter().map(|b| b.clone().subst(&substs)).collect::>(), f, )?; } } } Ty::Bound(idx) => write!(f, "?{}.{}", idx.debruijn.depth(), idx.index)?, Ty::Dyn(predicates) => { write!(f, "dyn ")?; write_bounds_like_dyn_trait(predicates, f)?; } Ty::Opaque(opaque_ty) => { match opaque_ty.opaque_ty_id { OpaqueTyId::ReturnTypeImplTrait(func, idx) => { let datas = f.db.return_type_impl_traits(func).expect("impl trait id without data"); let data = (*datas) .as_ref() .map(|rpit| rpit.impl_traits[idx as usize].bounds.clone()); let bounds = data.subst(&opaque_ty.parameters); write!(f, "impl ")?; write_bounds_like_dyn_trait(&bounds.value, f)?; } OpaqueTyId::AsyncBlockTypeImplTrait(..) => { write!(f, "{{async block}}")?; } }; } Ty::Unknown => { if f.display_target.is_source_code() { return Err(HirDisplayError::DisplaySourceCodeError( DisplaySourceCodeError::UnknownType, )); } write!(f, "{{unknown}}")?; } Ty::Infer(..) => write!(f, "_")?, } Ok(()) } } impl HirDisplay for FnSig { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { write!(f, "fn(")?; f.write_joined(self.params(), ", ")?; if self.is_varargs { if self.params().is_empty() { write!(f, "...")?; } else { write!(f, ", ...")?; } } write!(f, ")")?; let ret = self.ret(); if *ret != Ty::unit() { let ret_display = ret.into_displayable(f.db, f.max_size, f.omit_verbose_types, f.display_target); write!(f, " -> {}", ret_display)?; } Ok(()) } } fn fn_traits(db: &dyn DefDatabase, trait_: TraitId) -> impl Iterator { let krate = trait_.lookup(db).container.module(db).krate; let fn_traits = [ db.lang_item(krate, "fn".into()), db.lang_item(krate, "fn_mut".into()), db.lang_item(krate, "fn_once".into()), ]; // FIXME: Replace ArrayVec when into_iter is a thing on arrays ArrayVec::from(fn_traits).into_iter().flatten().flat_map(|it| it.as_trait()) } pub fn write_bounds_like_dyn_trait( predicates: &[GenericPredicate], f: &mut HirFormatter, ) -> Result<(), HirDisplayError> { // Note: This code is written to produce nice results (i.e. // corresponding to surface Rust) for types that can occur in // actual Rust. It will have weird results if the predicates // aren't as expected (i.e. self types = $0, projection // predicates for a certain trait come after the Implemented // predicate for that trait). let mut first = true; let mut angle_open = false; let mut is_fn_trait = false; for p in predicates.iter() { match p { GenericPredicate::Implemented(trait_ref) => { let trait_ = trait_ref.trait_; if !is_fn_trait { is_fn_trait = fn_traits(f.db.upcast(), trait_).any(|it| it == trait_); } if !is_fn_trait && angle_open { write!(f, ">")?; angle_open = false; } if !first { write!(f, " + ")?; } // We assume that the self type is $0 (i.e. the // existential) here, which is the only thing that's // possible in actual Rust, and hence don't print it write!(f, "{}", f.db.trait_data(trait_).name)?; if let [_, params @ ..] = &*trait_ref.substs.0 { if is_fn_trait { if let Some(args) = params.first().and_then(|it| it.as_tuple()) { write!(f, "(")?; f.write_joined(&*args.0, ", ")?; write!(f, ")")?; } } else if !params.is_empty() { write!(f, "<")?; f.write_joined(params, ", ")?; // there might be assoc type bindings, so we leave the angle brackets open angle_open = true; } } } GenericPredicate::Projection(projection_pred) if is_fn_trait => { is_fn_trait = false; write!(f, " -> ")?; projection_pred.ty.hir_fmt(f)?; } GenericPredicate::Projection(projection_pred) => { // in types in actual Rust, these will always come // after the corresponding Implemented predicate if angle_open { write!(f, ", ")?; } else { write!(f, "<")?; angle_open = true; } let type_alias = f.db.type_alias_data(projection_pred.projection_ty.associated_ty); write!(f, "{} = ", type_alias.name)?; projection_pred.ty.hir_fmt(f)?; } GenericPredicate::Error => { if angle_open { // impl Trait write!(f, ", ")?; } else if !first { // impl Trait + {error} write!(f, " + ")?; } p.hir_fmt(f)?; } } first = false; } if angle_open { write!(f, ">")?; } Ok(()) } impl TraitRef { fn hir_fmt_ext(&self, f: &mut HirFormatter, use_as: bool) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } self.substs[0].hir_fmt(f)?; if use_as { write!(f, " as ")?; } else { write!(f, ": ")?; } write!(f, "{}", f.db.trait_data(self.trait_).name)?; if self.substs.len() > 1 { write!(f, "<")?; f.write_joined(&self.substs[1..], ", ")?; write!(f, ">")?; } Ok(()) } } impl HirDisplay for TraitRef { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { self.hir_fmt_ext(f, false) } } impl HirDisplay for &GenericPredicate { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { HirDisplay::hir_fmt(*self, f) } } impl HirDisplay for GenericPredicate { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { if f.should_truncate() { return write!(f, "{}", TYPE_HINT_TRUNCATION); } match self { GenericPredicate::Implemented(trait_ref) => trait_ref.hir_fmt(f)?, GenericPredicate::Projection(projection_pred) => { write!(f, "<")?; projection_pred.projection_ty.trait_ref(f.db).hir_fmt_ext(f, true)?; write!( f, ">::{} = ", f.db.type_alias_data(projection_pred.projection_ty.associated_ty).name, )?; projection_pred.ty.hir_fmt(f)?; } GenericPredicate::Error => write!(f, "{{error}}")?, } Ok(()) } } impl HirDisplay for Lifetime { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { match self { Lifetime::Parameter(id) => { let generics = generics(f.db.upcast(), id.parent); let param_data = &generics.params.lifetimes[id.local_id]; write!(f, "{}", ¶m_data.name) } Lifetime::Static => write!(f, "'static"), } } } impl HirDisplay for Obligation { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { match self { Obligation::Trait(tr) => { write!(f, "Implements(")?; tr.hir_fmt(f)?; write!(f, ")") } Obligation::Projection(proj) => { write!(f, "Normalize(")?; proj.projection_ty.hir_fmt(f)?; write!(f, " => ")?; proj.ty.hir_fmt(f)?; write!(f, ")") } } } }