//! Unification and canonicalization logic. use std::borrow::Cow; use chalk_ir::{FloatTy, IntTy, TyVariableKind}; use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue}; use super::{InferenceContext, Obligation}; use crate::{ BoundVar, Canonical, DebruijnIndex, FnPointer, GenericPredicate, InEnvironment, InferenceVar, Interner, Scalar, Substitution, Ty, TyKind, TypeWalk, }; impl<'a> InferenceContext<'a> { pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b> where 'a: 'b, { Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() } } } pub(super) struct Canonicalizer<'a, 'b> where 'a: 'b, { ctx: &'b mut InferenceContext<'a>, free_vars: Vec<(InferenceVar, TyVariableKind)>, /// A stack of type variables that is used to detect recursive types (which /// are an error, but we need to protect against them to avoid stack /// overflows). var_stack: Vec, } #[derive(Debug)] pub(super) struct Canonicalized { pub(super) value: Canonical, free_vars: Vec<(InferenceVar, TyVariableKind)>, } impl<'a, 'b> Canonicalizer<'a, 'b> { fn add(&mut self, free_var: InferenceVar, kind: TyVariableKind) -> usize { self.free_vars.iter().position(|&(v, _)| v == free_var).unwrap_or_else(|| { let next_index = self.free_vars.len(); self.free_vars.push((free_var, kind)); next_index }) } fn do_canonicalize(&mut self, t: T, binders: DebruijnIndex) -> T { t.fold_binders( &mut |ty, binders| match ty.interned(&Interner) { &TyKind::InferenceVar(var, kind) => { let inner = var.to_inner(); if self.var_stack.contains(&inner) { // recursive type return self.ctx.table.type_variable_table.fallback_value(var, kind); } if let Some(known_ty) = self.ctx.table.var_unification_table.inlined_probe_value(inner).known() { self.var_stack.push(inner); let result = self.do_canonicalize(known_ty.clone(), binders); self.var_stack.pop(); result } else { let root = self.ctx.table.var_unification_table.find(inner); let position = self.add(InferenceVar::from_inner(root), kind); TyKind::BoundVar(BoundVar::new(binders, position)).intern(&Interner) } } _ => ty, }, binders, ) } fn into_canonicalized(self, result: T) -> Canonicalized { let kinds = self.free_vars.iter().map(|&(_, k)| k).collect(); Canonicalized { value: Canonical { value: result, kinds }, free_vars: self.free_vars } } pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized { let result = self.do_canonicalize(ty, DebruijnIndex::INNERMOST); self.into_canonicalized(result) } pub(crate) fn canonicalize_obligation( mut self, obligation: InEnvironment, ) -> Canonicalized> { let result = match obligation.value { Obligation::Trait(tr) => { Obligation::Trait(self.do_canonicalize(tr, DebruijnIndex::INNERMOST)) } Obligation::Projection(pr) => { Obligation::Projection(self.do_canonicalize(pr, DebruijnIndex::INNERMOST)) } }; self.into_canonicalized(InEnvironment { value: result, environment: obligation.environment, }) } } impl Canonicalized { pub(super) fn decanonicalize_ty(&self, mut ty: Ty) -> Ty { ty.walk_mut_binders( &mut |ty, binders| { if let &mut TyKind::BoundVar(bound) = ty.interned_mut() { if bound.debruijn >= binders { let (v, k) = self.free_vars[bound.index]; *ty = TyKind::InferenceVar(v, k).intern(&Interner); } } }, DebruijnIndex::INNERMOST, ); ty } pub(super) fn apply_solution( &self, ctx: &mut InferenceContext<'_>, solution: Canonical, ) { // the solution may contain new variables, which we need to convert to new inference vars let new_vars = Substitution( solution .kinds .iter() .map(|k| match k { TyVariableKind::General => ctx.table.new_type_var(), TyVariableKind::Integer => ctx.table.new_integer_var(), TyVariableKind::Float => ctx.table.new_float_var(), }) .collect(), ); for (i, ty) in solution.value.into_iter().enumerate() { let (v, k) = self.free_vars[i]; // eagerly replace projections in the type; we may be getting types // e.g. from where clauses where this hasn't happened yet let ty = ctx.normalize_associated_types_in(ty.clone().subst_bound_vars(&new_vars)); ctx.table.unify(&TyKind::InferenceVar(v, k).intern(&Interner), &ty); } } } pub(crate) fn unify(tys: &Canonical<(Ty, Ty)>) -> Option { let mut table = InferenceTable::new(); let vars = Substitution( tys.kinds .iter() // we always use type vars here because we want everything to // fallback to Unknown in the end (kind of hacky, as below) .map(|_| table.new_type_var()) .collect(), ); let ty1_with_vars = tys.value.0.clone().subst_bound_vars(&vars); let ty2_with_vars = tys.value.1.clone().subst_bound_vars(&vars); if !table.unify(&ty1_with_vars, &ty2_with_vars) { return None; } // default any type vars that weren't unified back to their original bound vars // (kind of hacky) for (i, var) in vars.iter().enumerate() { if &*table.resolve_ty_shallow(var) == var { table.unify( var, &TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, i)).intern(&Interner), ); } } Some( Substitution::builder(tys.kinds.len()) .fill(vars.iter().map(|v| table.resolve_ty_completely(v.clone()))) .build(), ) } #[derive(Clone, Debug)] pub(super) struct TypeVariableTable { inner: Vec, } impl TypeVariableTable { fn push(&mut self, data: TypeVariableData) { self.inner.push(data); } pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) { self.inner[iv.to_inner().0 as usize].diverging = diverging; } fn is_diverging(&mut self, iv: InferenceVar) -> bool { self.inner[iv.to_inner().0 as usize].diverging } fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty { match kind { _ if self.inner[iv.to_inner().0 as usize].diverging => TyKind::Never, TyVariableKind::General => TyKind::Unknown, TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)), TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)), } .intern(&Interner) } } #[derive(Copy, Clone, Debug)] pub(crate) struct TypeVariableData { diverging: bool, } #[derive(Clone, Debug)] pub(crate) struct InferenceTable { pub(super) var_unification_table: InPlaceUnificationTable, pub(super) type_variable_table: TypeVariableTable, } impl InferenceTable { pub(crate) fn new() -> Self { InferenceTable { var_unification_table: InPlaceUnificationTable::new(), type_variable_table: TypeVariableTable { inner: Vec::new() }, } } fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty { self.type_variable_table.push(TypeVariableData { diverging }); let key = self.var_unification_table.new_key(TypeVarValue::Unknown); assert_eq!(key.0 as usize, self.type_variable_table.inner.len() - 1); TyKind::InferenceVar(InferenceVar::from_inner(key), kind).intern(&Interner) } pub(crate) fn new_type_var(&mut self) -> Ty { self.new_var(TyVariableKind::General, false) } pub(crate) fn new_integer_var(&mut self) -> Ty { self.new_var(TyVariableKind::Integer, false) } pub(crate) fn new_float_var(&mut self) -> Ty { self.new_var(TyVariableKind::Float, false) } pub(crate) fn new_maybe_never_var(&mut self) -> Ty { self.new_var(TyVariableKind::General, true) } pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty { self.resolve_ty_completely_inner(&mut Vec::new(), ty) } pub(crate) fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty { self.resolve_ty_as_possible_inner(&mut Vec::new(), ty) } pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { self.unify_inner(ty1, ty2, 0) } pub(crate) fn unify_substs( &mut self, substs1: &Substitution, substs2: &Substitution, depth: usize, ) -> bool { substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth)) } fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool { if depth > 1000 { // prevent stackoverflows panic!("infinite recursion in unification"); } if ty1 == ty2 { return true; } // try to resolve type vars first let ty1 = self.resolve_ty_shallow(ty1); let ty2 = self.resolve_ty_shallow(ty2); if ty1.equals_ctor(&ty2) { match (ty1.interned(&Interner), ty2.interned(&Interner)) { (TyKind::Adt(_, substs1), TyKind::Adt(_, substs2)) | (TyKind::FnDef(_, substs1), TyKind::FnDef(_, substs2)) | ( TyKind::Function(FnPointer { substs: substs1, .. }), TyKind::Function(FnPointer { substs: substs2, .. }), ) | (TyKind::Tuple(_, substs1), TyKind::Tuple(_, substs2)) | (TyKind::OpaqueType(_, substs1), TyKind::OpaqueType(_, substs2)) | (TyKind::AssociatedType(_, substs1), TyKind::AssociatedType(_, substs2)) | (TyKind::Closure(.., substs1), TyKind::Closure(.., substs2)) => { self.unify_substs(substs1, substs2, depth + 1) } (TyKind::Ref(_, ty1), TyKind::Ref(_, ty2)) | (TyKind::Raw(_, ty1), TyKind::Raw(_, ty2)) | (TyKind::Array(ty1), TyKind::Array(ty2)) | (TyKind::Slice(ty1), TyKind::Slice(ty2)) => self.unify_inner(ty1, ty2, depth + 1), _ => true, /* we checked equals_ctor already */ } } else { self.unify_inner_trivial(&ty1, &ty2, depth) } } pub(super) fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool { match (ty1.interned(&Interner), ty2.interned(&Interner)) { (TyKind::Unknown, _) | (_, TyKind::Unknown) => true, (TyKind::Placeholder(p1), TyKind::Placeholder(p2)) if *p1 == *p2 => true, (TyKind::Dyn(dyn1), TyKind::Dyn(dyn2)) if dyn1.len() == dyn2.len() => { for (pred1, pred2) in dyn1.iter().zip(dyn2.iter()) { if !self.unify_preds(pred1, pred2, depth + 1) { return false; } } true } ( TyKind::InferenceVar(tv1, TyVariableKind::General), TyKind::InferenceVar(tv2, TyVariableKind::General), ) | ( TyKind::InferenceVar(tv1, TyVariableKind::Integer), TyKind::InferenceVar(tv2, TyVariableKind::Integer), ) | ( TyKind::InferenceVar(tv1, TyVariableKind::Float), TyKind::InferenceVar(tv2, TyVariableKind::Float), ) if self.type_variable_table.is_diverging(*tv1) == self.type_variable_table.is_diverging(*tv2) => { // both type vars are unknown since we tried to resolve them self.var_unification_table.union(tv1.to_inner(), tv2.to_inner()); true } // The order of MaybeNeverTypeVar matters here. // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar. // Unifying MaybeNeverTypeVar and other concrete type will let the former become it. (TyKind::InferenceVar(tv, TyVariableKind::General), other) | (other, TyKind::InferenceVar(tv, TyVariableKind::General)) | ( TyKind::InferenceVar(tv, TyVariableKind::Integer), other @ TyKind::Scalar(Scalar::Int(_)), ) | ( other @ TyKind::Scalar(Scalar::Int(_)), TyKind::InferenceVar(tv, TyVariableKind::Integer), ) | ( TyKind::InferenceVar(tv, TyVariableKind::Integer), other @ TyKind::Scalar(Scalar::Uint(_)), ) | ( other @ TyKind::Scalar(Scalar::Uint(_)), TyKind::InferenceVar(tv, TyVariableKind::Integer), ) | ( TyKind::InferenceVar(tv, TyVariableKind::Float), other @ TyKind::Scalar(Scalar::Float(_)), ) | ( other @ TyKind::Scalar(Scalar::Float(_)), TyKind::InferenceVar(tv, TyVariableKind::Float), ) => { // the type var is unknown since we tried to resolve it self.var_unification_table.union_value( tv.to_inner(), TypeVarValue::Known(other.clone().intern(&Interner)), ); true } _ => false, } } fn unify_preds( &mut self, pred1: &GenericPredicate, pred2: &GenericPredicate, depth: usize, ) -> bool { match (pred1, pred2) { (GenericPredicate::Implemented(tr1), GenericPredicate::Implemented(tr2)) if tr1.trait_ == tr2.trait_ => { self.unify_substs(&tr1.substs, &tr2.substs, depth + 1) } (GenericPredicate::Projection(proj1), GenericPredicate::Projection(proj2)) if proj1.projection_ty.associated_ty_id == proj2.projection_ty.associated_ty_id => { self.unify_substs( &proj1.projection_ty.substitution, &proj2.projection_ty.substitution, depth + 1, ) && self.unify_inner(&proj1.ty, &proj2.ty, depth + 1) } _ => false, } } /// If `ty` is a type variable with known type, returns that type; /// otherwise, return ty. pub(crate) fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> { let mut ty = Cow::Borrowed(ty); // The type variable could resolve to a int/float variable. Hence try // resolving up to three times; each type of variable shouldn't occur // more than once for i in 0..3 { if i > 0 { cov_mark::hit!(type_var_resolves_to_int_var); } match ty.interned(&Interner) { TyKind::InferenceVar(tv, _) => { let inner = tv.to_inner(); match self.var_unification_table.inlined_probe_value(inner).known() { Some(known_ty) => { // The known_ty can't be a type var itself ty = Cow::Owned(known_ty.clone()); } _ => return ty, } } _ => return ty, } } log::error!("Inference variable still not resolved: {:?}", ty); ty } /// Resolves the type as far as currently possible, replacing type variables /// by their known types. All types returned by the infer_* functions should /// be resolved as far as possible, i.e. contain no type variables with /// known type. fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty.interned(&Interner) { &TyKind::InferenceVar(tv, kind) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { cov_mark::hit!(type_var_cycles_resolve_as_possible); // recursive type return self.type_variable_table.fallback_value(tv, kind); } if let Some(known_ty) = self.var_unification_table.inlined_probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_as_possible_inner(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { ty } } _ => ty, }) } /// Resolves the type completely; type variables without known type are /// replaced by TyKind::Unknown. fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty.interned(&Interner) { &TyKind::InferenceVar(tv, kind) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { cov_mark::hit!(type_var_cycles_resolve_completely); // recursive type return self.type_variable_table.fallback_value(tv, kind); } if let Some(known_ty) = self.var_unification_table.inlined_probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_completely_inner(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { self.type_variable_table.fallback_value(tv, kind) } } _ => ty, }) } } /// The ID of a type variable. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] pub(super) struct TypeVarId(pub(super) u32); impl UnifyKey for TypeVarId { type Value = TypeVarValue; fn index(&self) -> u32 { self.0 } fn from_index(i: u32) -> Self { TypeVarId(i) } fn tag() -> &'static str { "TypeVarId" } } /// The value of a type variable: either we already know the type, or we don't /// know it yet. #[derive(Clone, PartialEq, Eq, Debug)] pub(super) enum TypeVarValue { Known(Ty), Unknown, } impl TypeVarValue { fn known(&self) -> Option<&Ty> { match self { TypeVarValue::Known(ty) => Some(ty), TypeVarValue::Unknown => None, } } } impl UnifyValue for TypeVarValue { type Error = NoError; fn unify_values(value1: &Self, value2: &Self) -> Result { match (value1, value2) { // We should never equate two type variables, both of which have // known types. Instead, we recursively equate those types. (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!( "equating two type variables, both of which have known types: {:?} and {:?}", t1, t2 ), // If one side is known, prefer that one. (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()), (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()), (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown), } } }