//! The type system. We currently use this to infer types for completion, hover //! information and various assists. #[allow(unused)] macro_rules! eprintln { ($($tt:tt)*) => { stdx::eprintln!($($tt)*) }; } mod autoderef; pub mod primitive; pub mod traits; pub mod method_resolution; mod op; mod lower; pub(crate) mod infer; pub(crate) mod utils; pub mod display; pub mod db; pub mod diagnostics; #[cfg(test)] mod tests; #[cfg(test)] mod test_db; use std::{iter, mem, ops::Deref, sync::Arc}; use base_db::salsa; use hir_def::{ builtin_type::BuiltinType, expr::ExprId, type_ref::Rawness, AssocContainerId, FunctionId, GenericDefId, HasModule, LifetimeParamId, Lookup, TraitId, TypeAliasId, TypeParamId, }; use itertools::Itertools; use smallvec::SmallVec; use crate::{ db::HirDatabase, display::HirDisplay, utils::{generics, make_mut_slice, Generics}, }; pub use autoderef::autoderef; pub use infer::{InferenceResult, InferenceVar}; pub use lower::{ associated_type_shorthand_candidates, callable_item_sig, CallableDefId, ImplTraitLoweringMode, TyDefId, TyLoweringContext, ValueTyDefId, }; pub use traits::{InEnvironment, Obligation, ProjectionPredicate, TraitEnvironment}; pub use chalk_ir::{AdtId, BoundVar, DebruijnIndex, Mutability, Safety, Scalar, TyVariableKind}; pub use crate::traits::chalk::Interner; pub type ForeignDefId = chalk_ir::ForeignDefId; pub type AssocTypeId = chalk_ir::AssocTypeId; pub type FnDefId = chalk_ir::FnDefId; pub type ClosureId = chalk_ir::ClosureId; pub type OpaqueTyId = chalk_ir::OpaqueTyId; pub type PlaceholderIndex = chalk_ir::PlaceholderIndex; #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub enum Lifetime { Parameter(LifetimeParamId), Static, } #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct OpaqueTy { pub opaque_ty_id: OpaqueTyId, pub substitution: Substitution, } /// A "projection" type corresponds to an (unnormalized) /// projection like `>::Foo`. Note that the /// trait and all its parameters are fully known. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct ProjectionTy { pub associated_ty_id: AssocTypeId, pub substitution: Substitution, } impl ProjectionTy { pub fn trait_ref(&self, db: &dyn HirDatabase) -> TraitRef { TraitRef { trait_: self.trait_(db), substs: self.substitution.clone() } } fn trait_(&self, db: &dyn HirDatabase) -> TraitId { match from_assoc_type_id(self.associated_ty_id).lookup(db.upcast()).container { AssocContainerId::TraitId(it) => it, _ => panic!("projection ty without parent trait"), } } } impl TypeWalk for ProjectionTy { fn walk(&self, f: &mut impl FnMut(&Ty)) { self.substitution.walk(f); } fn walk_mut_binders( &mut self, f: &mut impl FnMut(&mut Ty, DebruijnIndex), binders: DebruijnIndex, ) { self.substitution.walk_mut_binders(f, binders); } } pub type FnSig = chalk_ir::FnSig; #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct FnPointer { pub num_args: usize, pub sig: FnSig, pub substs: Substitution, } #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub enum AliasTy { /// A "projection" type corresponds to an (unnormalized) /// projection like `>::Foo`. Note that the /// trait and all its parameters are fully known. Projection(ProjectionTy), /// An opaque type (`impl Trait`). /// /// This is currently only used for return type impl trait; each instance of /// `impl Trait` in a return type gets its own ID. Opaque(OpaqueTy), } /// A type. /// /// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents /// the same thing (but in a different way). /// /// This should be cheap to clone. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub enum TyKind { /// Structures, enumerations and unions. Adt(AdtId, Substitution), /// Represents an associated item like `Iterator::Item`. This is used /// when we have tried to normalize a projection like `T::Item` but /// couldn't find a better representation. In that case, we generate /// an **application type** like `(Iterator::Item)`. AssociatedType(AssocTypeId, Substitution), /// a scalar type like `bool` or `u32` Scalar(Scalar), /// A tuple type. For example, `(i32, bool)`. Tuple(usize, Substitution), /// An array with the given length. Written as `[T; n]`. Array(Ty), /// The pointee of an array slice. Written as `[T]`. Slice(Ty), /// A raw pointer. Written as `*mut T` or `*const T` Raw(Mutability, Ty), /// A reference; a pointer with an associated lifetime. Written as /// `&'a mut T` or `&'a T`. Ref(Mutability, Ty), /// This represents a placeholder for an opaque type in situations where we /// don't know the hidden type (i.e. currently almost always). This is /// analogous to the `AssociatedType` type constructor. /// It is also used as the type of async block, with one type parameter /// representing the Future::Output type. OpaqueType(OpaqueTyId, Substitution), /// The anonymous type of a function declaration/definition. Each /// function has a unique type, which is output (for a function /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`. /// /// This includes tuple struct / enum variant constructors as well. /// /// For example the type of `bar` here: /// /// ``` /// fn foo() -> i32 { 1 } /// let bar = foo; // bar: fn() -> i32 {foo} /// ``` FnDef(FnDefId, Substitution), /// The pointee of a string slice. Written as `str`. Str, /// The never type `!`. Never, /// The type of a specific closure. /// /// The closure signature is stored in a `FnPtr` type in the first type /// parameter. Closure(ClosureId, Substitution), /// Represents a foreign type declared in external blocks. ForeignType(ForeignDefId), /// A pointer to a function. Written as `fn() -> i32`. /// /// For example the type of `bar` here: /// /// ``` /// fn foo() -> i32 { 1 } /// let bar: fn() -> i32 = foo; /// ``` Function(FnPointer), /// An "alias" type represents some form of type alias, such as: /// - An associated type projection like `::Item` /// - `impl Trait` types /// - Named type aliases like `type Foo = Vec` Alias(AliasTy), /// A placeholder for a type parameter; for example, `T` in `fn f(x: T) /// {}` when we're type-checking the body of that function. In this /// situation, we know this stands for *some* type, but don't know the exact /// type. Placeholder(PlaceholderIndex), /// A bound type variable. This is used in various places: when representing /// some polymorphic type like the type of function `fn f`, the type /// parameters get turned into variables; during trait resolution, inference /// variables get turned into bound variables and back; and in `Dyn` the /// `Self` type is represented with a bound variable as well. BoundVar(BoundVar), /// A type variable used during type checking. InferenceVar(InferenceVar, TyVariableKind), /// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust). /// /// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)` /// represents the `Self` type inside the bounds. This is currently /// implicit; Chalk has the `Binders` struct to make it explicit, but it /// didn't seem worth the overhead yet. Dyn(Arc<[GenericPredicate]>), /// A placeholder for a type which could not be computed; this is propagated /// to avoid useless error messages. Doubles as a placeholder where type /// variables are inserted before type checking, since we want to try to /// infer a better type here anyway -- for the IDE use case, we want to try /// to infer as much as possible even in the presence of type errors. Unknown, } #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct Ty(Arc); impl TyKind { pub fn intern(self, _interner: &Interner) -> Ty { Ty(Arc::new(self)) } } impl Ty { pub fn interned(&self, _interner: &Interner) -> &TyKind { &self.0 } pub fn interned_mut(&mut self) -> &mut TyKind { Arc::make_mut(&mut self.0) } pub fn into_inner(self) -> TyKind { Arc::try_unwrap(self.0).unwrap_or_else(|a| (*a).clone()) } } /// A list of substitutions for generic parameters. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct Substitution(SmallVec<[Ty; 2]>); impl TypeWalk for Substitution { fn walk(&self, f: &mut impl FnMut(&Ty)) { for t in self.0.iter() { t.walk(f); } } fn walk_mut_binders( &mut self, f: &mut impl FnMut(&mut Ty, DebruijnIndex), binders: DebruijnIndex, ) { for t in &mut self.0 { t.walk_mut_binders(f, binders); } } } impl Substitution { pub fn interned(&self, _: &Interner) -> &[Ty] { &self.0 } pub fn empty() -> Substitution { Substitution(SmallVec::new()) } pub fn single(ty: Ty) -> Substitution { Substitution({ let mut v = SmallVec::new(); v.push(ty); v }) } pub fn prefix(&self, n: usize) -> Substitution { Substitution(self.0[..std::cmp::min(self.0.len(), n)].into()) } pub fn suffix(&self, n: usize) -> Substitution { Substitution(self.0[self.0.len() - std::cmp::min(self.0.len(), n)..].into()) } pub fn as_single(&self) -> &Ty { if self.0.len() != 1 { panic!("expected substs of len 1, got {:?}", self); } &self.0[0] } pub fn from_iter(_interner: &Interner, elements: impl IntoIterator) -> Self { Substitution(elements.into_iter().collect()) } /// Return Substs that replace each parameter by itself (i.e. `Ty::Param`). pub(crate) fn type_params_for_generics( db: &dyn HirDatabase, generic_params: &Generics, ) -> Substitution { Substitution( generic_params .iter() .map(|(id, _)| TyKind::Placeholder(to_placeholder_idx(db, id)).intern(&Interner)) .collect(), ) } /// Return Substs that replace each parameter by itself (i.e. `Ty::Param`). pub fn type_params(db: &dyn HirDatabase, def: impl Into) -> Substitution { let params = generics(db.upcast(), def.into()); Substitution::type_params_for_generics(db, ¶ms) } /// Return Substs that replace each parameter by a bound variable. pub(crate) fn bound_vars(generic_params: &Generics, debruijn: DebruijnIndex) -> Substitution { Substitution( generic_params .iter() .enumerate() .map(|(idx, _)| TyKind::BoundVar(BoundVar::new(debruijn, idx)).intern(&Interner)) .collect(), ) } pub fn build_for_def(db: &dyn HirDatabase, def: impl Into) -> SubstsBuilder { let def = def.into(); let params = generics(db.upcast(), def); let param_count = params.len(); Substitution::builder(param_count) } pub(crate) fn build_for_generics(generic_params: &Generics) -> SubstsBuilder { Substitution::builder(generic_params.len()) } fn builder(param_count: usize) -> SubstsBuilder { SubstsBuilder { vec: Vec::with_capacity(param_count), param_count } } } /// Return an index of a parameter in the generic type parameter list by it's id. pub fn param_idx(db: &dyn HirDatabase, id: TypeParamId) -> Option { generics(db.upcast(), id.parent).param_idx(id) } #[derive(Debug, Clone)] pub struct SubstsBuilder { vec: Vec, param_count: usize, } impl SubstsBuilder { pub fn build(self) -> Substitution { assert_eq!(self.vec.len(), self.param_count); Substitution(self.vec.into()) } pub fn push(mut self, ty: Ty) -> Self { self.vec.push(ty); self } fn remaining(&self) -> usize { self.param_count - self.vec.len() } pub fn fill_with_bound_vars(self, debruijn: DebruijnIndex, starting_from: usize) -> Self { self.fill( (starting_from..) .map(|idx| TyKind::BoundVar(BoundVar::new(debruijn, idx)).intern(&Interner)), ) } pub fn fill_with_unknown(self) -> Self { self.fill(iter::repeat(TyKind::Unknown.intern(&Interner))) } pub fn fill(mut self, filler: impl Iterator) -> Self { self.vec.extend(filler.take(self.remaining())); assert_eq!(self.remaining(), 0); self } pub fn use_parent_substs(mut self, parent_substs: &Substitution) -> Self { assert!(self.vec.is_empty()); assert!(parent_substs.len() <= self.param_count); self.vec.extend(parent_substs.iter().cloned()); self } } impl Deref for Substitution { type Target = [Ty]; fn deref(&self) -> &[Ty] { &self.0 } } #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)] pub struct Binders { pub num_binders: usize, pub value: T, } impl Binders { pub fn new(num_binders: usize, value: T) -> Self { Self { num_binders, value } } pub fn as_ref(&self) -> Binders<&T> { Binders { num_binders: self.num_binders, value: &self.value } } pub fn map(self, f: impl FnOnce(T) -> U) -> Binders { Binders { num_binders: self.num_binders, value: f(self.value) } } pub fn filter_map(self, f: impl FnOnce(T) -> Option) -> Option> { Some(Binders { num_binders: self.num_binders, value: f(self.value)? }) } } impl Binders<&T> { pub fn cloned(&self) -> Binders { Binders { num_binders: self.num_binders, value: self.value.clone() } } } impl Binders { /// Substitutes all variables. pub fn subst(self, subst: &Substitution) -> T { assert_eq!(subst.len(), self.num_binders); self.value.subst_bound_vars(subst) } /// Substitutes just a prefix of the variables (shifting the rest). pub fn subst_prefix(self, subst: &Substitution) -> Binders { assert!(subst.len() < self.num_binders); Binders::new(self.num_binders - subst.len(), self.value.subst_bound_vars(subst)) } } impl TypeWalk for Binders { fn walk(&self, f: &mut impl FnMut(&Ty)) { self.value.walk(f); } fn walk_mut_binders( &mut self, f: &mut impl FnMut(&mut Ty, DebruijnIndex), binders: DebruijnIndex, ) { self.value.walk_mut_binders(f, binders.shifted_in()) } } /// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait. /// Name to be bikeshedded: TraitBound? TraitImplements? #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct TraitRef { /// FIXME name? pub trait_: TraitId, pub substs: Substitution, } impl TraitRef { pub fn self_ty(&self) -> &Ty { &self.substs[0] } } impl TypeWalk for TraitRef { fn walk(&self, f: &mut impl FnMut(&Ty)) { self.substs.walk(f); } fn walk_mut_binders( &mut self, f: &mut impl FnMut(&mut Ty, DebruijnIndex), binders: DebruijnIndex, ) { self.substs.walk_mut_binders(f, binders); } } /// Like `generics::WherePredicate`, but with resolved types: A condition on the /// parameters of a generic item. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub enum GenericPredicate { /// The given trait needs to be implemented for its type parameters. Implemented(TraitRef), /// An associated type bindings like in `Iterator`. Projection(ProjectionPredicate), /// We couldn't resolve the trait reference. (If some type parameters can't /// be resolved, they will just be Unknown). Error, } impl GenericPredicate { pub fn is_error(&self) -> bool { matches!(self, GenericPredicate::Error) } pub fn is_implemented(&self) -> bool { matches!(self, GenericPredicate::Implemented(_)) } pub fn trait_ref(&self, db: &dyn HirDatabase) -> Option { match self { GenericPredicate::Implemented(tr) => Some(tr.clone()), GenericPredicate::Projection(proj) => Some(proj.projection_ty.trait_ref(db)), GenericPredicate::Error => None, } } } impl TypeWalk for GenericPredicate { fn walk(&self, f: &mut impl FnMut(&Ty)) { match self { GenericPredicate::Implemented(trait_ref) => trait_ref.walk(f), GenericPredicate::Projection(projection_pred) => projection_pred.walk(f), GenericPredicate::Error => {} } } fn walk_mut_binders( &mut self, f: &mut impl FnMut(&mut Ty, DebruijnIndex), binders: DebruijnIndex, ) { match self { GenericPredicate::Implemented(trait_ref) => trait_ref.walk_mut_binders(f, binders), GenericPredicate::Projection(projection_pred) => { projection_pred.walk_mut_binders(f, binders) } GenericPredicate::Error => {} } } } /// Basically a claim (currently not validated / checked) that the contained /// type / trait ref contains no inference variables; any inference variables it /// contained have been replaced by bound variables, and `kinds` tells us how /// many there are and whether they were normal or float/int variables. This is /// used to erase irrelevant differences between types before using them in /// queries. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub struct Canonical { pub value: T, pub kinds: Arc<[TyVariableKind]>, } impl Canonical { pub fn new(value: T, kinds: impl IntoIterator) -> Self { Self { value, kinds: kinds.into_iter().collect() } } } /// A function signature as seen by type inference: Several parameter types and /// one return type. #[derive(Clone, PartialEq, Eq, Debug)] pub struct CallableSig { params_and_return: Arc<[Ty]>, is_varargs: bool, } /// A polymorphic function signature. pub type PolyFnSig = Binders; impl CallableSig { pub fn from_params_and_return(mut params: Vec, ret: Ty, is_varargs: bool) -> CallableSig { params.push(ret); CallableSig { params_and_return: params.into(), is_varargs } } pub fn from_fn_ptr(fn_ptr: &FnPointer) -> CallableSig { CallableSig { params_and_return: fn_ptr.substs.interned(&Interner).iter().cloned().collect(), is_varargs: fn_ptr.sig.variadic, } } pub fn from_substs(substs: &Substitution) -> CallableSig { CallableSig { params_and_return: substs.iter().cloned().collect(), is_varargs: false } } pub fn params(&self) -> &[Ty] { &self.params_and_return[0..self.params_and_return.len() - 1] } pub fn ret(&self) -> &Ty { &self.params_and_return[self.params_and_return.len() - 1] } } impl TypeWalk for CallableSig { fn walk(&self, f: &mut impl FnMut(&Ty)) { for t in self.params_and_return.iter() { t.walk(f); } } fn walk_mut_binders( &mut self, f: &mut impl FnMut(&mut Ty, DebruijnIndex), binders: DebruijnIndex, ) { for t in make_mut_slice(&mut self.params_and_return) { t.walk_mut_binders(f, binders); } } } impl Ty { pub fn unit() -> Self { TyKind::Tuple(0, Substitution::empty()).intern(&Interner) } pub fn adt_ty(adt: hir_def::AdtId, substs: Substitution) -> Ty { TyKind::Adt(AdtId(adt), substs).intern(&Interner) } pub fn fn_ptr(sig: CallableSig) -> Self { TyKind::Function(FnPointer { num_args: sig.params().len(), sig: FnSig { abi: (), safety: Safety::Safe, variadic: sig.is_varargs }, substs: Substitution::from_iter(&Interner, sig.params_and_return.iter().cloned()), }) .intern(&Interner) } pub fn builtin(builtin: BuiltinType) -> Self { match builtin { BuiltinType::Char => TyKind::Scalar(Scalar::Char).intern(&Interner), BuiltinType::Bool => TyKind::Scalar(Scalar::Bool).intern(&Interner), BuiltinType::Str => TyKind::Str.intern(&Interner), BuiltinType::Int(t) => { TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(t))).intern(&Interner) } BuiltinType::Uint(t) => { TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(t))).intern(&Interner) } BuiltinType::Float(t) => { TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(t))).intern(&Interner) } } } pub fn as_reference(&self) -> Option<(&Ty, Mutability)> { match self.interned(&Interner) { TyKind::Ref(mutability, ty) => Some((ty, *mutability)), _ => None, } } pub fn as_reference_or_ptr(&self) -> Option<(&Ty, Rawness, Mutability)> { match self.interned(&Interner) { TyKind::Ref(mutability, ty) => Some((ty, Rawness::Ref, *mutability)), TyKind::Raw(mutability, ty) => Some((ty, Rawness::RawPtr, *mutability)), _ => None, } } pub fn strip_references(&self) -> &Ty { let mut t: &Ty = self; while let TyKind::Ref(_mutability, ty) = t.interned(&Interner) { t = ty; } t } pub fn as_adt(&self) -> Option<(hir_def::AdtId, &Substitution)> { match self.interned(&Interner) { TyKind::Adt(AdtId(adt), parameters) => Some((*adt, parameters)), _ => None, } } pub fn as_tuple(&self) -> Option<&Substitution> { match self.interned(&Interner) { TyKind::Tuple(_, substs) => Some(substs), _ => None, } } pub fn as_generic_def(&self, db: &dyn HirDatabase) -> Option { match *self.interned(&Interner) { TyKind::Adt(AdtId(adt), ..) => Some(adt.into()), TyKind::FnDef(callable, ..) => { Some(db.lookup_intern_callable_def(callable.into()).into()) } TyKind::AssociatedType(type_alias, ..) => Some(from_assoc_type_id(type_alias).into()), TyKind::ForeignType(type_alias, ..) => Some(from_foreign_def_id(type_alias).into()), _ => None, } } pub fn is_never(&self) -> bool { matches!(self.interned(&Interner), TyKind::Never) } pub fn is_unknown(&self) -> bool { matches!(self.interned(&Interner), TyKind::Unknown) } pub fn equals_ctor(&self, other: &Ty) -> bool { match (self.interned(&Interner), other.interned(&Interner)) { (TyKind::Adt(adt, ..), TyKind::Adt(adt2, ..)) => adt == adt2, (TyKind::Slice(_), TyKind::Slice(_)) | (TyKind::Array(_), TyKind::Array(_)) => true, (TyKind::FnDef(def_id, ..), TyKind::FnDef(def_id2, ..)) => def_id == def_id2, (TyKind::OpaqueType(ty_id, ..), TyKind::OpaqueType(ty_id2, ..)) => ty_id == ty_id2, (TyKind::AssociatedType(ty_id, ..), TyKind::AssociatedType(ty_id2, ..)) => { ty_id == ty_id2 } (TyKind::ForeignType(ty_id, ..), TyKind::ForeignType(ty_id2, ..)) => ty_id == ty_id2, (TyKind::Closure(id1, _), TyKind::Closure(id2, _)) => id1 == id2, (TyKind::Ref(mutability, ..), TyKind::Ref(mutability2, ..)) | (TyKind::Raw(mutability, ..), TyKind::Raw(mutability2, ..)) => { mutability == mutability2 } ( TyKind::Function(FnPointer { num_args, sig, .. }), TyKind::Function(FnPointer { num_args: num_args2, sig: sig2, .. }), ) => num_args == num_args2 && sig == sig2, (TyKind::Tuple(cardinality, _), TyKind::Tuple(cardinality2, _)) => { cardinality == cardinality2 } (TyKind::Str, TyKind::Str) | (TyKind::Never, TyKind::Never) => true, (TyKind::Scalar(scalar), TyKind::Scalar(scalar2)) => scalar == scalar2, _ => false, } } /// If this is a `dyn Trait` type, this returns the `Trait` part. pub fn dyn_trait_ref(&self) -> Option<&TraitRef> { match self.interned(&Interner) { TyKind::Dyn(bounds) => bounds.get(0).and_then(|b| match b { GenericPredicate::Implemented(trait_ref) => Some(trait_ref), _ => None, }), _ => None, } } /// If this is a `dyn Trait`, returns that trait. pub fn dyn_trait(&self) -> Option { self.dyn_trait_ref().map(|it| it.trait_) } fn builtin_deref(&self) -> Option { match self.interned(&Interner) { TyKind::Ref(.., ty) => Some(ty.clone()), TyKind::Raw(.., ty) => Some(ty.clone()), _ => None, } } pub fn callable_def(&self, db: &dyn HirDatabase) -> Option { match self.interned(&Interner) { &TyKind::FnDef(def, ..) => Some(db.lookup_intern_callable_def(def.into())), _ => None, } } pub fn as_fn_def(&self, db: &dyn HirDatabase) -> Option { if let Some(CallableDefId::FunctionId(func)) = self.callable_def(db) { Some(func) } else { None } } pub fn callable_sig(&self, db: &dyn HirDatabase) -> Option { match self.interned(&Interner) { TyKind::Function(fn_ptr) => Some(CallableSig::from_fn_ptr(fn_ptr)), TyKind::FnDef(def, parameters) => { let callable_def = db.lookup_intern_callable_def((*def).into()); let sig = db.callable_item_signature(callable_def); Some(sig.subst(¶meters)) } TyKind::Closure(.., substs) => { let sig_param = &substs[0]; sig_param.callable_sig(db) } _ => None, } } /// Returns the type parameters of this type if it has some (i.e. is an ADT /// or function); so if `self` is `Option`, this returns the `u32`. pub fn substs(&self) -> Option<&Substitution> { match self.interned(&Interner) { TyKind::Adt(_, substs) | TyKind::FnDef(_, substs) | TyKind::Function(FnPointer { substs, .. }) | TyKind::Tuple(_, substs) | TyKind::OpaqueType(_, substs) | TyKind::AssociatedType(_, substs) | TyKind::Closure(.., substs) => Some(substs), _ => None, } } fn substs_mut(&mut self) -> Option<&mut Substitution> { match self.interned_mut() { TyKind::Adt(_, substs) | TyKind::FnDef(_, substs) | TyKind::Function(FnPointer { substs, .. }) | TyKind::Tuple(_, substs) | TyKind::OpaqueType(_, substs) | TyKind::AssociatedType(_, substs) | TyKind::Closure(.., substs) => Some(substs), _ => None, } } pub fn impl_trait_bounds(&self, db: &dyn HirDatabase) -> Option> { match self.interned(&Interner) { TyKind::OpaqueType(opaque_ty_id, ..) => { match db.lookup_intern_impl_trait_id((*opaque_ty_id).into()) { ImplTraitId::AsyncBlockTypeImplTrait(def, _expr) => { let krate = def.module(db.upcast()).krate(); if let Some(future_trait) = db .lang_item(krate, "future_trait".into()) .and_then(|item| item.as_trait()) { // This is only used by type walking. // Parameters will be walked outside, and projection predicate is not used. // So just provide the Future trait. let impl_bound = GenericPredicate::Implemented(TraitRef { trait_: future_trait, substs: Substitution::empty(), }); Some(vec![impl_bound]) } else { None } } ImplTraitId::ReturnTypeImplTrait(..) => None, } } TyKind::Alias(AliasTy::Opaque(opaque_ty)) => { let predicates = match db.lookup_intern_impl_trait_id(opaque_ty.opaque_ty_id.into()) { ImplTraitId::ReturnTypeImplTrait(func, idx) => { db.return_type_impl_traits(func).map(|it| { let data = (*it) .as_ref() .map(|rpit| rpit.impl_traits[idx as usize].bounds.clone()); data.subst(&opaque_ty.substitution) }) } // It always has an parameter for Future::Output type. ImplTraitId::AsyncBlockTypeImplTrait(..) => unreachable!(), }; predicates.map(|it| it.value) } TyKind::Placeholder(idx) => { let id = from_placeholder_idx(db, *idx); let generic_params = db.generic_params(id.parent); let param_data = &generic_params.types[id.local_id]; match param_data.provenance { hir_def::generics::TypeParamProvenance::ArgumentImplTrait => { let predicates = db .generic_predicates_for_param(id) .into_iter() .map(|pred| pred.value.clone()) .collect_vec(); Some(predicates) } _ => None, } } _ => None, } } pub fn associated_type_parent_trait(&self, db: &dyn HirDatabase) -> Option { match self.interned(&Interner) { TyKind::AssociatedType(id, ..) => { match from_assoc_type_id(*id).lookup(db.upcast()).container { AssocContainerId::TraitId(trait_id) => Some(trait_id), _ => None, } } TyKind::Alias(AliasTy::Projection(projection_ty)) => { match from_assoc_type_id(projection_ty.associated_ty_id) .lookup(db.upcast()) .container { AssocContainerId::TraitId(trait_id) => Some(trait_id), _ => None, } } _ => None, } } } /// This allows walking structures that contain types to do something with those /// types, similar to Chalk's `Fold` trait. pub trait TypeWalk { fn walk(&self, f: &mut impl FnMut(&Ty)); fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { self.walk_mut_binders(&mut |ty, _binders| f(ty), DebruijnIndex::INNERMOST); } /// Walk the type, counting entered binders. /// /// `TyKind::Bound` variables use DeBruijn indexing, which means that 0 refers /// to the innermost binder, 1 to the next, etc.. So when we want to /// substitute a certain bound variable, we can't just walk the whole type /// and blindly replace each instance of a certain index; when we 'enter' /// things that introduce new bound variables, we have to keep track of /// that. Currently, the only thing that introduces bound variables on our /// side are `TyKind::Dyn` and `TyKind::Opaque`, which each introduce a bound /// variable for the self type. fn walk_mut_binders( &mut self, f: &mut impl FnMut(&mut Ty, DebruijnIndex), binders: DebruijnIndex, ); fn fold_binders( mut self, f: &mut impl FnMut(Ty, DebruijnIndex) -> Ty, binders: DebruijnIndex, ) -> Self where Self: Sized, { self.walk_mut_binders( &mut |ty_mut, binders| { let ty = mem::replace(ty_mut, TyKind::Unknown.intern(&Interner)); *ty_mut = f(ty, binders); }, binders, ); self } fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self where Self: Sized, { self.walk_mut(&mut |ty_mut| { let ty = mem::replace(ty_mut, TyKind::Unknown.intern(&Interner)); *ty_mut = f(ty); }); self } /// Substitutes `TyKind::Bound` vars with the given substitution. fn subst_bound_vars(self, substs: &Substitution) -> Self where Self: Sized, { self.subst_bound_vars_at_depth(substs, DebruijnIndex::INNERMOST) } /// Substitutes `TyKind::Bound` vars with the given substitution. fn subst_bound_vars_at_depth(mut self, substs: &Substitution, depth: DebruijnIndex) -> Self where Self: Sized, { self.walk_mut_binders( &mut |ty, binders| { if let &mut TyKind::BoundVar(bound) = ty.interned_mut() { if bound.debruijn >= binders { *ty = substs.0[bound.index].clone().shift_bound_vars(binders); } } }, depth, ); self } /// Shifts up debruijn indices of `TyKind::Bound` vars by `n`. fn shift_bound_vars(self, n: DebruijnIndex) -> Self where Self: Sized, { self.fold_binders( &mut |ty, binders| match ty.interned(&Interner) { TyKind::BoundVar(bound) if bound.debruijn >= binders => { TyKind::BoundVar(bound.shifted_in_from(n)).intern(&Interner) } _ => ty, }, DebruijnIndex::INNERMOST, ) } } impl TypeWalk for Ty { fn walk(&self, f: &mut impl FnMut(&Ty)) { match self.interned(&Interner) { TyKind::Alias(AliasTy::Projection(p_ty)) => { for t in p_ty.substitution.iter() { t.walk(f); } } TyKind::Alias(AliasTy::Opaque(o_ty)) => { for t in o_ty.substitution.iter() { t.walk(f); } } TyKind::Dyn(predicates) => { for p in predicates.iter() { p.walk(f); } } TyKind::Slice(ty) | TyKind::Array(ty) | TyKind::Ref(_, ty) | TyKind::Raw(_, ty) => { ty.walk(f); } _ => { if let Some(substs) = self.substs() { for t in substs.iter() { t.walk(f); } } } } f(self); } fn walk_mut_binders( &mut self, f: &mut impl FnMut(&mut Ty, DebruijnIndex), binders: DebruijnIndex, ) { match self.interned_mut() { TyKind::Alias(AliasTy::Projection(p_ty)) => { p_ty.substitution.walk_mut_binders(f, binders); } TyKind::Dyn(predicates) => { for p in make_mut_slice(predicates) { p.walk_mut_binders(f, binders.shifted_in()); } } TyKind::Alias(AliasTy::Opaque(o_ty)) => { o_ty.substitution.walk_mut_binders(f, binders); } TyKind::Slice(ty) | TyKind::Array(ty) | TyKind::Ref(_, ty) | TyKind::Raw(_, ty) => { ty.walk_mut_binders(f, binders); } _ => { if let Some(substs) = self.substs_mut() { substs.walk_mut_binders(f, binders); } } } f(self, binders); } } impl TypeWalk for Vec { fn walk(&self, f: &mut impl FnMut(&Ty)) { for t in self { t.walk(f); } } fn walk_mut_binders( &mut self, f: &mut impl FnMut(&mut Ty, DebruijnIndex), binders: DebruijnIndex, ) { for t in self { t.walk_mut_binders(f, binders); } } } #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)] pub enum ImplTraitId { ReturnTypeImplTrait(hir_def::FunctionId, u16), AsyncBlockTypeImplTrait(hir_def::DefWithBodyId, ExprId), } #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct ReturnTypeImplTraits { pub(crate) impl_traits: Vec, } #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub(crate) struct ReturnTypeImplTrait { pub(crate) bounds: Binders>, } pub fn to_foreign_def_id(id: TypeAliasId) -> ForeignDefId { chalk_ir::ForeignDefId(salsa::InternKey::as_intern_id(&id)) } pub fn from_foreign_def_id(id: ForeignDefId) -> TypeAliasId { salsa::InternKey::from_intern_id(id.0) } pub fn to_assoc_type_id(id: TypeAliasId) -> AssocTypeId { chalk_ir::AssocTypeId(salsa::InternKey::as_intern_id(&id)) } pub fn from_assoc_type_id(id: AssocTypeId) -> TypeAliasId { salsa::InternKey::from_intern_id(id.0) } pub fn from_placeholder_idx(db: &dyn HirDatabase, idx: PlaceholderIndex) -> TypeParamId { assert_eq!(idx.ui, chalk_ir::UniverseIndex::ROOT); let interned_id = salsa::InternKey::from_intern_id(salsa::InternId::from(idx.idx)); db.lookup_intern_type_param_id(interned_id) } pub fn to_placeholder_idx(db: &dyn HirDatabase, id: TypeParamId) -> PlaceholderIndex { let interned_id = db.intern_type_param_id(id); PlaceholderIndex { ui: chalk_ir::UniverseIndex::ROOT, idx: salsa::InternKey::as_intern_id(&interned_id).as_usize(), } }