//! Methods for lowering the HIR to types. There are two main cases here: //! //! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a //! type: The entry point for this is `Ty::from_hir`. //! - Building the type for an item: This happens through the `type_for_def` query. //! //! This usually involves resolving names, collecting generic arguments etc. use std::{iter, sync::Arc}; use arena::map::ArenaMap; use base_db::CrateId; use hir_def::{ adt::StructKind, builtin_type::BuiltinType, generics::{TypeParamProvenance, WherePredicate, WherePredicateTarget}, path::{GenericArg, Path, PathSegment, PathSegments}, resolver::{HasResolver, Resolver, TypeNs}, type_ref::{TypeBound, TypeRef}, AdtId, AssocContainerId, AssocItemId, ConstId, EnumId, EnumVariantId, FunctionId, GenericDefId, HasModule, ImplId, LocalFieldId, Lookup, StaticId, StructId, TraitId, TypeAliasId, TypeParamId, UnionId, VariantId, }; use hir_expand::name::Name; use smallvec::SmallVec; use stdx::impl_from; use test_utils::mark; use crate::{ db::HirDatabase, primitive::{FloatTy, IntTy}, utils::{ all_super_trait_refs, associated_type_by_name_including_super_traits, generics, make_mut_slice, variant_data, }, Binders, BoundVar, DebruijnIndex, FnSig, GenericPredicate, OpaqueTy, OpaqueTyId, PolyFnSig, ProjectionPredicate, ProjectionTy, ReturnTypeImplTrait, ReturnTypeImplTraits, Substs, TraitEnvironment, TraitRef, Ty, TypeCtor, TypeWalk, }; #[derive(Debug)] pub struct TyLoweringContext<'a> { pub db: &'a dyn HirDatabase, pub resolver: &'a Resolver, in_binders: DebruijnIndex, /// Note: Conceptually, it's thinkable that we could be in a location where /// some type params should be represented as placeholders, and others /// should be converted to variables. I think in practice, this isn't /// possible currently, so this should be fine for now. pub type_param_mode: TypeParamLoweringMode, pub impl_trait_mode: ImplTraitLoweringMode, impl_trait_counter: std::cell::Cell<u16>, /// When turning `impl Trait` into opaque types, we have to collect the /// bounds at the same time to get the IDs correct (without becoming too /// complicated). I don't like using interior mutability (as for the /// counter), but I've tried and failed to make the lifetimes work for /// passing around a `&mut TyLoweringContext`. The core problem is that /// we're grouping the mutable data (the counter and this field) together /// with the immutable context (the references to the DB and resolver). /// Splitting this up would be a possible fix. opaque_type_data: std::cell::RefCell<Vec<ReturnTypeImplTrait>>, } impl<'a> TyLoweringContext<'a> { pub fn new(db: &'a dyn HirDatabase, resolver: &'a Resolver) -> Self { let impl_trait_counter = std::cell::Cell::new(0); let impl_trait_mode = ImplTraitLoweringMode::Disallowed; let type_param_mode = TypeParamLoweringMode::Placeholder; let in_binders = DebruijnIndex::INNERMOST; let opaque_type_data = std::cell::RefCell::new(Vec::new()); Self { db, resolver, in_binders, impl_trait_mode, impl_trait_counter, type_param_mode, opaque_type_data, } } pub fn with_debruijn<T>( &self, debruijn: DebruijnIndex, f: impl FnOnce(&TyLoweringContext) -> T, ) -> T { let opaque_ty_data_vec = self.opaque_type_data.replace(Vec::new()); let new_ctx = Self { in_binders: debruijn, impl_trait_counter: std::cell::Cell::new(self.impl_trait_counter.get()), opaque_type_data: std::cell::RefCell::new(opaque_ty_data_vec), ..*self }; let result = f(&new_ctx); self.impl_trait_counter.set(new_ctx.impl_trait_counter.get()); self.opaque_type_data.replace(new_ctx.opaque_type_data.into_inner()); result } pub fn with_shifted_in<T>( &self, debruijn: DebruijnIndex, f: impl FnOnce(&TyLoweringContext) -> T, ) -> T { self.with_debruijn(self.in_binders.shifted_in_from(debruijn), f) } pub fn with_impl_trait_mode(self, impl_trait_mode: ImplTraitLoweringMode) -> Self { Self { impl_trait_mode, ..self } } pub fn with_type_param_mode(self, type_param_mode: TypeParamLoweringMode) -> Self { Self { type_param_mode, ..self } } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum ImplTraitLoweringMode { /// `impl Trait` gets lowered into an opaque type that doesn't unify with /// anything except itself. This is used in places where values flow 'out', /// i.e. for arguments of the function we're currently checking, and return /// types of functions we're calling. Opaque, /// `impl Trait` gets lowered into a type variable. Used for argument /// position impl Trait when inside the respective function, since it allows /// us to support that without Chalk. Param, /// `impl Trait` gets lowered into a variable that can unify with some /// type. This is used in places where values flow 'in', i.e. for arguments /// of functions we're calling, and the return type of the function we're /// currently checking. Variable, /// `impl Trait` is disallowed and will be an error. Disallowed, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum TypeParamLoweringMode { Placeholder, Variable, } impl Ty { pub fn from_hir(ctx: &TyLoweringContext<'_>, type_ref: &TypeRef) -> Self { Ty::from_hir_ext(ctx, type_ref).0 } pub fn from_hir_ext(ctx: &TyLoweringContext<'_>, type_ref: &TypeRef) -> (Self, Option<TypeNs>) { let mut res = None; let ty = match type_ref { TypeRef::Never => Ty::simple(TypeCtor::Never), TypeRef::Tuple(inner) => { let inner_tys: Arc<[Ty]> = inner.iter().map(|tr| Ty::from_hir(ctx, tr)).collect(); Ty::apply( TypeCtor::Tuple { cardinality: inner_tys.len() as u16 }, Substs(inner_tys), ) } TypeRef::Path(path) => { let (ty, res_) = Ty::from_hir_path(ctx, path); res = res_; ty } TypeRef::RawPtr(inner, mutability) => { let inner_ty = Ty::from_hir(ctx, inner); Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty) } TypeRef::Array(inner) => { let inner_ty = Ty::from_hir(ctx, inner); Ty::apply_one(TypeCtor::Array, inner_ty) } TypeRef::Slice(inner) => { let inner_ty = Ty::from_hir(ctx, inner); Ty::apply_one(TypeCtor::Slice, inner_ty) } TypeRef::Reference(inner, mutability) => { let inner_ty = Ty::from_hir(ctx, inner); Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty) } TypeRef::Placeholder => Ty::Unknown, TypeRef::Fn(params, is_varargs) => { let sig = Substs(params.iter().map(|tr| Ty::from_hir(ctx, tr)).collect()); Ty::apply( TypeCtor::FnPtr { num_args: sig.len() as u16 - 1, is_varargs: *is_varargs }, sig, ) } TypeRef::DynTrait(bounds) => { let self_ty = Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, 0)); let predicates = ctx.with_shifted_in(DebruijnIndex::ONE, |ctx| { bounds .iter() .flat_map(|b| GenericPredicate::from_type_bound(ctx, b, self_ty.clone())) .collect() }); Ty::Dyn(predicates) } TypeRef::ImplTrait(bounds) => { match ctx.impl_trait_mode { ImplTraitLoweringMode::Opaque => { let idx = ctx.impl_trait_counter.get(); ctx.impl_trait_counter.set(idx + 1); assert!(idx as usize == ctx.opaque_type_data.borrow().len()); // this dance is to make sure the data is in the right // place even if we encounter more opaque types while // lowering the bounds ctx.opaque_type_data .borrow_mut() .push(ReturnTypeImplTrait { bounds: Binders::new(1, Vec::new()) }); // We don't want to lower the bounds inside the binders // we're currently in, because they don't end up inside // those binders. E.g. when we have `impl Trait<impl // OtherTrait<T>>`, the `impl OtherTrait<T>` can't refer // to the self parameter from `impl Trait`, and the // bounds aren't actually stored nested within each // other, but separately. So if the `T` refers to a type // parameter of the outer function, it's just one binder // away instead of two. let actual_opaque_type_data = ctx .with_debruijn(DebruijnIndex::INNERMOST, |ctx| { ReturnTypeImplTrait::from_hir(ctx, &bounds) }); ctx.opaque_type_data.borrow_mut()[idx as usize] = actual_opaque_type_data; let func = match ctx.resolver.generic_def() { Some(GenericDefId::FunctionId(f)) => f, _ => panic!("opaque impl trait lowering in non-function"), }; let impl_trait_id = OpaqueTyId::ReturnTypeImplTrait(func, idx); let generics = generics(ctx.db.upcast(), func.into()); let parameters = Substs::bound_vars(&generics, ctx.in_binders); Ty::Opaque(OpaqueTy { opaque_ty_id: impl_trait_id, parameters }) } ImplTraitLoweringMode::Param => { let idx = ctx.impl_trait_counter.get(); // FIXME we're probably doing something wrong here ctx.impl_trait_counter.set(idx + count_impl_traits(type_ref) as u16); if let Some(def) = ctx.resolver.generic_def() { let generics = generics(ctx.db.upcast(), def); let param = generics .iter() .filter(|(_, data)| { data.provenance == TypeParamProvenance::ArgumentImplTrait }) .nth(idx as usize) .map_or(Ty::Unknown, |(id, _)| Ty::Placeholder(id)); param } else { Ty::Unknown } } ImplTraitLoweringMode::Variable => { let idx = ctx.impl_trait_counter.get(); // FIXME we're probably doing something wrong here ctx.impl_trait_counter.set(idx + count_impl_traits(type_ref) as u16); let (parent_params, self_params, list_params, _impl_trait_params) = if let Some(def) = ctx.resolver.generic_def() { let generics = generics(ctx.db.upcast(), def); generics.provenance_split() } else { (0, 0, 0, 0) }; Ty::Bound(BoundVar::new( ctx.in_binders, idx as usize + parent_params + self_params + list_params, )) } ImplTraitLoweringMode::Disallowed => { // FIXME: report error Ty::Unknown } } } TypeRef::Error => Ty::Unknown, }; (ty, res) } /// This is only for `generic_predicates_for_param`, where we can't just /// lower the self types of the predicates since that could lead to cycles. /// So we just check here if the `type_ref` resolves to a generic param, and which. fn from_hir_only_param(ctx: &TyLoweringContext<'_>, type_ref: &TypeRef) -> Option<TypeParamId> { let path = match type_ref { TypeRef::Path(path) => path, _ => return None, }; if path.type_anchor().is_some() { return None; } if path.segments().len() > 1 { return None; } let resolution = match ctx.resolver.resolve_path_in_type_ns(ctx.db.upcast(), path.mod_path()) { Some((it, None)) => it, _ => return None, }; if let TypeNs::GenericParam(param_id) = resolution { Some(param_id) } else { None } } pub(crate) fn from_type_relative_path( ctx: &TyLoweringContext<'_>, ty: Ty, // We need the original resolution to lower `Self::AssocTy` correctly res: Option<TypeNs>, remaining_segments: PathSegments<'_>, ) -> (Ty, Option<TypeNs>) { if remaining_segments.len() == 1 { // resolve unselected assoc types let segment = remaining_segments.first().unwrap(); (Ty::select_associated_type(ctx, res, segment), None) } else if remaining_segments.len() > 1 { // FIXME report error (ambiguous associated type) (Ty::Unknown, None) } else { (ty, res) } } pub(crate) fn from_partly_resolved_hir_path( ctx: &TyLoweringContext<'_>, resolution: TypeNs, resolved_segment: PathSegment<'_>, remaining_segments: PathSegments<'_>, infer_args: bool, ) -> (Ty, Option<TypeNs>) { let ty = match resolution { TypeNs::TraitId(trait_) => { // if this is a bare dyn Trait, we'll directly put the required ^0 for the self type in there let self_ty = if remaining_segments.len() == 0 { Some(Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, 0))) } else { None }; let trait_ref = TraitRef::from_resolved_path(ctx, trait_, resolved_segment, self_ty); let ty = if remaining_segments.len() == 1 { let segment = remaining_segments.first().unwrap(); let found = associated_type_by_name_including_super_traits( ctx.db, trait_ref, &segment.name, ); match found { Some((super_trait_ref, associated_ty)) => { // FIXME handle type parameters on the segment Ty::Projection(ProjectionTy { associated_ty, parameters: super_trait_ref.substs, }) } None => { // FIXME: report error (associated type not found) Ty::Unknown } } } else if remaining_segments.len() > 1 { // FIXME report error (ambiguous associated type) Ty::Unknown } else { Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)])) }; return (ty, None); } TypeNs::GenericParam(param_id) => { let generics = generics( ctx.db.upcast(), ctx.resolver.generic_def().expect("generics in scope"), ); match ctx.type_param_mode { TypeParamLoweringMode::Placeholder => Ty::Placeholder(param_id), TypeParamLoweringMode::Variable => { let idx = generics.param_idx(param_id).expect("matching generics"); Ty::Bound(BoundVar::new(ctx.in_binders, idx)) } } } TypeNs::SelfType(impl_id) => { let generics = generics(ctx.db.upcast(), impl_id.into()); let substs = match ctx.type_param_mode { TypeParamLoweringMode::Placeholder => { Substs::type_params_for_generics(&generics) } TypeParamLoweringMode::Variable => { Substs::bound_vars(&generics, ctx.in_binders) } }; ctx.db.impl_self_ty(impl_id).subst(&substs) } TypeNs::AdtSelfType(adt) => { let generics = generics(ctx.db.upcast(), adt.into()); let substs = match ctx.type_param_mode { TypeParamLoweringMode::Placeholder => { Substs::type_params_for_generics(&generics) } TypeParamLoweringMode::Variable => { Substs::bound_vars(&generics, ctx.in_binders) } }; ctx.db.ty(adt.into()).subst(&substs) } TypeNs::AdtId(it) => { Ty::from_hir_path_inner(ctx, resolved_segment, it.into(), infer_args) } TypeNs::BuiltinType(it) => { Ty::from_hir_path_inner(ctx, resolved_segment, it.into(), infer_args) } TypeNs::TypeAliasId(it) => { Ty::from_hir_path_inner(ctx, resolved_segment, it.into(), infer_args) } // FIXME: report error TypeNs::EnumVariantId(_) => return (Ty::Unknown, None), }; Ty::from_type_relative_path(ctx, ty, Some(resolution), remaining_segments) } pub(crate) fn from_hir_path(ctx: &TyLoweringContext<'_>, path: &Path) -> (Ty, Option<TypeNs>) { // Resolve the path (in type namespace) if let Some(type_ref) = path.type_anchor() { let (ty, res) = Ty::from_hir_ext(ctx, &type_ref); return Ty::from_type_relative_path(ctx, ty, res, path.segments()); } let (resolution, remaining_index) = match ctx.resolver.resolve_path_in_type_ns(ctx.db.upcast(), path.mod_path()) { Some(it) => it, None => return (Ty::Unknown, None), }; let (resolved_segment, remaining_segments) = match remaining_index { None => ( path.segments().last().expect("resolved path has at least one element"), PathSegments::EMPTY, ), Some(i) => (path.segments().get(i - 1).unwrap(), path.segments().skip(i)), }; Ty::from_partly_resolved_hir_path( ctx, resolution, resolved_segment, remaining_segments, false, ) } fn select_associated_type( ctx: &TyLoweringContext<'_>, res: Option<TypeNs>, segment: PathSegment<'_>, ) -> Ty { if let Some(res) = res { let ty = associated_type_shorthand_candidates(ctx.db, res, move |name, t, associated_ty| { if name == segment.name { let substs = match ctx.type_param_mode { TypeParamLoweringMode::Placeholder => { // if we're lowering to placeholders, we have to put // them in now let s = Substs::type_params( ctx.db, ctx.resolver.generic_def().expect( "there should be generics if there's a generic param", ), ); t.substs.clone().subst_bound_vars(&s) } TypeParamLoweringMode::Variable => t.substs.clone(), }; // We need to shift in the bound vars, since // associated_type_shorthand_candidates does not do that let substs = substs.shift_bound_vars(ctx.in_binders); // FIXME handle type parameters on the segment return Some(Ty::Projection(ProjectionTy { associated_ty, parameters: substs, })); } None }); ty.unwrap_or(Ty::Unknown) } else { Ty::Unknown } } fn from_hir_path_inner( ctx: &TyLoweringContext<'_>, segment: PathSegment<'_>, typable: TyDefId, infer_args: bool, ) -> Ty { let generic_def = match typable { TyDefId::BuiltinType(_) => None, TyDefId::AdtId(it) => Some(it.into()), TyDefId::TypeAliasId(it) => Some(it.into()), }; let substs = substs_from_path_segment(ctx, segment, generic_def, infer_args); ctx.db.ty(typable).subst(&substs) } /// Collect generic arguments from a path into a `Substs`. See also /// `create_substs_for_ast_path` and `def_to_ty` in rustc. pub(super) fn substs_from_path( ctx: &TyLoweringContext<'_>, path: &Path, // Note that we don't call `db.value_type(resolved)` here, // `ValueTyDefId` is just a convenient way to pass generics and // special-case enum variants resolved: ValueTyDefId, infer_args: bool, ) -> Substs { let last = path.segments().last().expect("path should have at least one segment"); let (segment, generic_def) = match resolved { ValueTyDefId::FunctionId(it) => (last, Some(it.into())), ValueTyDefId::StructId(it) => (last, Some(it.into())), ValueTyDefId::UnionId(it) => (last, Some(it.into())), ValueTyDefId::ConstId(it) => (last, Some(it.into())), ValueTyDefId::StaticId(_) => (last, None), ValueTyDefId::EnumVariantId(var) => { // the generic args for an enum variant may be either specified // on the segment referring to the enum, or on the segment // referring to the variant. So `Option::<T>::None` and // `Option::None::<T>` are both allowed (though the former is // preferred). See also `def_ids_for_path_segments` in rustc. let len = path.segments().len(); let penultimate = if len >= 2 { path.segments().get(len - 2) } else { None }; let segment = match penultimate { Some(segment) if segment.args_and_bindings.is_some() => segment, _ => last, }; (segment, Some(var.parent.into())) } }; substs_from_path_segment(ctx, segment, generic_def, infer_args) } } fn substs_from_path_segment( ctx: &TyLoweringContext<'_>, segment: PathSegment<'_>, def_generic: Option<GenericDefId>, infer_args: bool, ) -> Substs { let mut substs = Vec::new(); let def_generics = def_generic.map(|def| generics(ctx.db.upcast(), def)); let (parent_params, self_params, type_params, impl_trait_params) = def_generics.map_or((0, 0, 0, 0), |g| g.provenance_split()); let total_len = parent_params + self_params + type_params + impl_trait_params; substs.extend(iter::repeat(Ty::Unknown).take(parent_params)); let mut had_explicit_args = false; if let Some(generic_args) = &segment.args_and_bindings { if !generic_args.has_self_type { substs.extend(iter::repeat(Ty::Unknown).take(self_params)); } let expected_num = if generic_args.has_self_type { self_params + type_params } else { type_params }; let skip = if generic_args.has_self_type && self_params == 0 { 1 } else { 0 }; // if args are provided, it should be all of them, but we can't rely on that for arg in generic_args.args.iter().skip(skip).take(expected_num) { match arg { GenericArg::Type(type_ref) => { had_explicit_args = true; let ty = Ty::from_hir(ctx, type_ref); substs.push(ty); } } } } // handle defaults. In expression or pattern path segments without // explicitly specified type arguments, missing type arguments are inferred // (i.e. defaults aren't used). if !infer_args || had_explicit_args { if let Some(def_generic) = def_generic { let defaults = ctx.db.generic_defaults(def_generic); assert_eq!(total_len, defaults.len()); for default_ty in defaults.iter().skip(substs.len()) { // each default can depend on the previous parameters let substs_so_far = Substs(substs.clone().into()); substs.push(default_ty.clone().subst(&substs_so_far)); } } } // add placeholders for args that were not provided // FIXME: emit diagnostics in contexts where this is not allowed for _ in substs.len()..total_len { substs.push(Ty::Unknown); } assert_eq!(substs.len(), total_len); Substs(substs.into()) } impl TraitRef { fn from_path( ctx: &TyLoweringContext<'_>, path: &Path, explicit_self_ty: Option<Ty>, ) -> Option<Self> { let resolved = match ctx.resolver.resolve_path_in_type_ns_fully(ctx.db.upcast(), path.mod_path())? { TypeNs::TraitId(tr) => tr, _ => return None, }; let segment = path.segments().last().expect("path should have at least one segment"); Some(TraitRef::from_resolved_path(ctx, resolved, segment, explicit_self_ty)) } pub(crate) fn from_resolved_path( ctx: &TyLoweringContext<'_>, resolved: TraitId, segment: PathSegment<'_>, explicit_self_ty: Option<Ty>, ) -> Self { let mut substs = TraitRef::substs_from_path(ctx, segment, resolved); if let Some(self_ty) = explicit_self_ty { make_mut_slice(&mut substs.0)[0] = self_ty; } TraitRef { trait_: resolved, substs } } fn from_hir( ctx: &TyLoweringContext<'_>, type_ref: &TypeRef, explicit_self_ty: Option<Ty>, ) -> Option<Self> { let path = match type_ref { TypeRef::Path(path) => path, _ => return None, }; TraitRef::from_path(ctx, path, explicit_self_ty) } fn substs_from_path( ctx: &TyLoweringContext<'_>, segment: PathSegment<'_>, resolved: TraitId, ) -> Substs { substs_from_path_segment(ctx, segment, Some(resolved.into()), false) } pub(crate) fn from_type_bound( ctx: &TyLoweringContext<'_>, bound: &TypeBound, self_ty: Ty, ) -> Option<TraitRef> { match bound { TypeBound::Path(path) => TraitRef::from_path(ctx, path, Some(self_ty)), TypeBound::Error => None, } } } impl GenericPredicate { pub(crate) fn from_where_predicate<'a>( ctx: &'a TyLoweringContext<'a>, where_predicate: &'a WherePredicate, ) -> impl Iterator<Item = GenericPredicate> + 'a { let self_ty = match &where_predicate.target { WherePredicateTarget::TypeRef(type_ref) => Ty::from_hir(ctx, type_ref), WherePredicateTarget::TypeParam(param_id) => { let generic_def = ctx.resolver.generic_def().expect("generics in scope"); let generics = generics(ctx.db.upcast(), generic_def); let param_id = hir_def::TypeParamId { parent: generic_def, local_id: *param_id }; match ctx.type_param_mode { TypeParamLoweringMode::Placeholder => Ty::Placeholder(param_id), TypeParamLoweringMode::Variable => { let idx = generics.param_idx(param_id).expect("matching generics"); Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, idx)) } } } }; GenericPredicate::from_type_bound(ctx, &where_predicate.bound, self_ty) } pub(crate) fn from_type_bound<'a>( ctx: &'a TyLoweringContext<'a>, bound: &'a TypeBound, self_ty: Ty, ) -> impl Iterator<Item = GenericPredicate> + 'a { let trait_ref = TraitRef::from_type_bound(ctx, bound, self_ty); iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented)) .chain( trait_ref .into_iter() .flat_map(move |tr| assoc_type_bindings_from_type_bound(ctx, bound, tr)), ) } } fn assoc_type_bindings_from_type_bound<'a>( ctx: &'a TyLoweringContext<'a>, bound: &'a TypeBound, trait_ref: TraitRef, ) -> impl Iterator<Item = GenericPredicate> + 'a { let last_segment = match bound { TypeBound::Path(path) => path.segments().last(), TypeBound::Error => None, }; last_segment .into_iter() .flat_map(|segment| segment.args_and_bindings.into_iter()) .flat_map(|args_and_bindings| args_and_bindings.bindings.iter()) .flat_map(move |binding| { let found = associated_type_by_name_including_super_traits( ctx.db, trait_ref.clone(), &binding.name, ); let (super_trait_ref, associated_ty) = match found { None => return SmallVec::<[GenericPredicate; 1]>::new(), Some(t) => t, }; let projection_ty = ProjectionTy { associated_ty, parameters: super_trait_ref.substs }; let mut preds = SmallVec::with_capacity( binding.type_ref.as_ref().map_or(0, |_| 1) + binding.bounds.len(), ); if let Some(type_ref) = &binding.type_ref { let ty = Ty::from_hir(ctx, type_ref); let projection_predicate = ProjectionPredicate { projection_ty: projection_ty.clone(), ty }; preds.push(GenericPredicate::Projection(projection_predicate)); } for bound in &binding.bounds { preds.extend(GenericPredicate::from_type_bound( ctx, bound, Ty::Projection(projection_ty.clone()), )); } preds }) } impl ReturnTypeImplTrait { fn from_hir(ctx: &TyLoweringContext, bounds: &[TypeBound]) -> Self { mark::hit!(lower_rpit); let self_ty = Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, 0)); let predicates = ctx.with_shifted_in(DebruijnIndex::ONE, |ctx| { bounds .iter() .flat_map(|b| GenericPredicate::from_type_bound(ctx, b, self_ty.clone())) .collect() }); ReturnTypeImplTrait { bounds: Binders::new(1, predicates) } } } fn count_impl_traits(type_ref: &TypeRef) -> usize { let mut count = 0; type_ref.walk(&mut |type_ref| { if matches!(type_ref, TypeRef::ImplTrait(_)) { count += 1; } }); count } /// Build the signature of a callable item (function, struct or enum variant). pub fn callable_item_sig(db: &dyn HirDatabase, def: CallableDefId) -> PolyFnSig { match def { CallableDefId::FunctionId(f) => fn_sig_for_fn(db, f), CallableDefId::StructId(s) => fn_sig_for_struct_constructor(db, s), CallableDefId::EnumVariantId(e) => fn_sig_for_enum_variant_constructor(db, e), } } pub fn associated_type_shorthand_candidates<R>( db: &dyn HirDatabase, res: TypeNs, mut cb: impl FnMut(&Name, &TraitRef, TypeAliasId) -> Option<R>, ) -> Option<R> { let traits_from_env: Vec<_> = match res { TypeNs::SelfType(impl_id) => match db.impl_trait(impl_id) { None => vec![], Some(trait_ref) => vec![trait_ref.value], }, TypeNs::GenericParam(param_id) => { let predicates = db.generic_predicates_for_param(param_id); let mut traits_: Vec<_> = predicates .iter() .filter_map(|pred| match &pred.value { GenericPredicate::Implemented(tr) => Some(tr.clone()), _ => None, }) .collect(); // Handle `Self::Type` referring to own associated type in trait definitions if let GenericDefId::TraitId(trait_id) = param_id.parent { let generics = generics(db.upcast(), trait_id.into()); if generics.params.types[param_id.local_id].provenance == TypeParamProvenance::TraitSelf { let trait_ref = TraitRef { trait_: trait_id, substs: Substs::bound_vars(&generics, DebruijnIndex::INNERMOST), }; traits_.push(trait_ref); } } traits_ } _ => vec![], }; for t in traits_from_env.into_iter().flat_map(move |t| all_super_trait_refs(db, t)) { let data = db.trait_data(t.trait_); for (name, assoc_id) in &data.items { match assoc_id { AssocItemId::TypeAliasId(alias) => { if let Some(result) = cb(name, &t, *alias) { return Some(result); } } AssocItemId::FunctionId(_) | AssocItemId::ConstId(_) => {} } } } None } /// Build the type of all specific fields of a struct or enum variant. pub(crate) fn field_types_query( db: &dyn HirDatabase, variant_id: VariantId, ) -> Arc<ArenaMap<LocalFieldId, Binders<Ty>>> { let var_data = variant_data(db.upcast(), variant_id); let (resolver, def): (_, GenericDefId) = match variant_id { VariantId::StructId(it) => (it.resolver(db.upcast()), it.into()), VariantId::UnionId(it) => (it.resolver(db.upcast()), it.into()), VariantId::EnumVariantId(it) => (it.parent.resolver(db.upcast()), it.parent.into()), }; let generics = generics(db.upcast(), def); let mut res = ArenaMap::default(); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); for (field_id, field_data) in var_data.fields().iter() { res.insert(field_id, Binders::new(generics.len(), Ty::from_hir(&ctx, &field_data.type_ref))) } Arc::new(res) } /// This query exists only to be used when resolving short-hand associated types /// like `T::Item`. /// /// See the analogous query in rustc and its comment: /// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46 /// This is a query mostly to handle cycles somewhat gracefully; e.g. the /// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but /// these are fine: `T: Foo<U::Item>, U: Foo<()>`. pub(crate) fn generic_predicates_for_param_query( db: &dyn HirDatabase, param_id: TypeParamId, ) -> Arc<[Binders<GenericPredicate>]> { let resolver = param_id.parent.resolver(db.upcast()); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); let generics = generics(db.upcast(), param_id.parent); resolver .where_predicates_in_scope() // we have to filter out all other predicates *first*, before attempting to lower them .filter(|pred| match &pred.target { WherePredicateTarget::TypeRef(type_ref) => { Ty::from_hir_only_param(&ctx, type_ref) == Some(param_id) } WherePredicateTarget::TypeParam(local_id) => *local_id == param_id.local_id, }) .flat_map(|pred| { GenericPredicate::from_where_predicate(&ctx, pred) .map(|p| Binders::new(generics.len(), p)) }) .collect() } pub(crate) fn generic_predicates_for_param_recover( _db: &dyn HirDatabase, _cycle: &[String], _param_id: &TypeParamId, ) -> Arc<[Binders<GenericPredicate>]> { Arc::new([]) } impl TraitEnvironment { pub fn lower(db: &dyn HirDatabase, resolver: &Resolver) -> Arc<TraitEnvironment> { let ctx = TyLoweringContext::new(db, &resolver) .with_type_param_mode(TypeParamLoweringMode::Placeholder); let mut predicates = resolver .where_predicates_in_scope() .flat_map(|pred| GenericPredicate::from_where_predicate(&ctx, pred)) .collect::<Vec<_>>(); if let Some(def) = resolver.generic_def() { let container: Option<AssocContainerId> = match def { // FIXME: is there a function for this? GenericDefId::FunctionId(f) => Some(f.lookup(db.upcast()).container), GenericDefId::AdtId(_) => None, GenericDefId::TraitId(_) => None, GenericDefId::TypeAliasId(t) => Some(t.lookup(db.upcast()).container), GenericDefId::ImplId(_) => None, GenericDefId::EnumVariantId(_) => None, GenericDefId::ConstId(c) => Some(c.lookup(db.upcast()).container), }; if let Some(AssocContainerId::TraitId(trait_id)) = container { // add `Self: Trait<T1, T2, ...>` to the environment in trait // function default implementations (and hypothetical code // inside consts or type aliases) test_utils::mark::hit!(trait_self_implements_self); let substs = Substs::type_params(db, trait_id); let trait_ref = TraitRef { trait_: trait_id, substs }; let pred = GenericPredicate::Implemented(trait_ref); predicates.push(pred); } } Arc::new(TraitEnvironment { predicates }) } } /// Resolve the where clause(s) of an item with generics. pub(crate) fn generic_predicates_query( db: &dyn HirDatabase, def: GenericDefId, ) -> Arc<[Binders<GenericPredicate>]> { let resolver = def.resolver(db.upcast()); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); let generics = generics(db.upcast(), def); resolver .where_predicates_in_scope() .flat_map(|pred| { GenericPredicate::from_where_predicate(&ctx, pred) .map(|p| Binders::new(generics.len(), p)) }) .collect() } /// Resolve the default type params from generics pub(crate) fn generic_defaults_query( db: &dyn HirDatabase, def: GenericDefId, ) -> Arc<[Binders<Ty>]> { let resolver = def.resolver(db.upcast()); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); let generic_params = generics(db.upcast(), def); let defaults = generic_params .iter() .enumerate() .map(|(idx, (_, p))| { let mut ty = p.default.as_ref().map_or(Ty::Unknown, |t| Ty::from_hir(&ctx, t)); // Each default can only refer to previous parameters. ty.walk_mut_binders( &mut |ty, binders| match ty { Ty::Bound(BoundVar { debruijn, index }) if *debruijn == binders => { if *index >= idx { // type variable default referring to parameter coming // after it. This is forbidden (FIXME: report // diagnostic) *ty = Ty::Unknown; } } _ => {} }, DebruijnIndex::INNERMOST, ); Binders::new(idx, ty) }) .collect(); defaults } fn fn_sig_for_fn(db: &dyn HirDatabase, def: FunctionId) -> PolyFnSig { let data = db.function_data(def); let resolver = def.resolver(db.upcast()); let ctx_params = TyLoweringContext::new(db, &resolver) .with_impl_trait_mode(ImplTraitLoweringMode::Variable) .with_type_param_mode(TypeParamLoweringMode::Variable); let params = data.params.iter().map(|tr| Ty::from_hir(&ctx_params, tr)).collect::<Vec<_>>(); let ctx_ret = TyLoweringContext::new(db, &resolver) .with_impl_trait_mode(ImplTraitLoweringMode::Opaque) .with_type_param_mode(TypeParamLoweringMode::Variable); let ret = Ty::from_hir(&ctx_ret, &data.ret_type); let generics = generics(db.upcast(), def.into()); let num_binders = generics.len(); Binders::new(num_binders, FnSig::from_params_and_return(params, ret, data.is_varargs)) } /// Build the declared type of a function. This should not need to look at the /// function body. fn type_for_fn(db: &dyn HirDatabase, def: FunctionId) -> Binders<Ty> { let generics = generics(db.upcast(), def.into()); let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST); Binders::new(substs.len(), Ty::apply(TypeCtor::FnDef(def.into()), substs)) } /// Build the declared type of a const. fn type_for_const(db: &dyn HirDatabase, def: ConstId) -> Binders<Ty> { let data = db.const_data(def); let generics = generics(db.upcast(), def.into()); let resolver = def.resolver(db.upcast()); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); Binders::new(generics.len(), Ty::from_hir(&ctx, &data.type_ref)) } /// Build the declared type of a static. fn type_for_static(db: &dyn HirDatabase, def: StaticId) -> Binders<Ty> { let data = db.static_data(def); let resolver = def.resolver(db.upcast()); let ctx = TyLoweringContext::new(db, &resolver); Binders::new(0, Ty::from_hir(&ctx, &data.type_ref)) } /// Build the declared type of a static. fn type_for_builtin(def: BuiltinType) -> Ty { Ty::simple(match def { BuiltinType::Char => TypeCtor::Char, BuiltinType::Bool => TypeCtor::Bool, BuiltinType::Str => TypeCtor::Str, BuiltinType::Int(t) => TypeCtor::Int(IntTy::from(t).into()), BuiltinType::Float(t) => TypeCtor::Float(FloatTy::from(t).into()), }) } fn fn_sig_for_struct_constructor(db: &dyn HirDatabase, def: StructId) -> PolyFnSig { let struct_data = db.struct_data(def); let fields = struct_data.variant_data.fields(); let resolver = def.resolver(db.upcast()); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); let params = fields.iter().map(|(_, field)| Ty::from_hir(&ctx, &field.type_ref)).collect::<Vec<_>>(); let ret = type_for_adt(db, def.into()); Binders::new(ret.num_binders, FnSig::from_params_and_return(params, ret.value, false)) } /// Build the type of a tuple struct constructor. fn type_for_struct_constructor(db: &dyn HirDatabase, def: StructId) -> Binders<Ty> { let struct_data = db.struct_data(def); if let StructKind::Unit = struct_data.variant_data.kind() { return type_for_adt(db, def.into()); } let generics = generics(db.upcast(), def.into()); let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST); Binders::new(substs.len(), Ty::apply(TypeCtor::FnDef(def.into()), substs)) } fn fn_sig_for_enum_variant_constructor(db: &dyn HirDatabase, def: EnumVariantId) -> PolyFnSig { let enum_data = db.enum_data(def.parent); let var_data = &enum_data.variants[def.local_id]; let fields = var_data.variant_data.fields(); let resolver = def.parent.resolver(db.upcast()); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); let params = fields.iter().map(|(_, field)| Ty::from_hir(&ctx, &field.type_ref)).collect::<Vec<_>>(); let ret = type_for_adt(db, def.parent.into()); Binders::new(ret.num_binders, FnSig::from_params_and_return(params, ret.value, false)) } /// Build the type of a tuple enum variant constructor. fn type_for_enum_variant_constructor(db: &dyn HirDatabase, def: EnumVariantId) -> Binders<Ty> { let enum_data = db.enum_data(def.parent); let var_data = &enum_data.variants[def.local_id].variant_data; if let StructKind::Unit = var_data.kind() { return type_for_adt(db, def.parent.into()); } let generics = generics(db.upcast(), def.parent.into()); let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST); Binders::new(substs.len(), Ty::apply(TypeCtor::FnDef(def.into()), substs)) } fn type_for_adt(db: &dyn HirDatabase, adt: AdtId) -> Binders<Ty> { let generics = generics(db.upcast(), adt.into()); let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST); Binders::new(substs.len(), Ty::apply(TypeCtor::Adt(adt), substs)) } fn type_for_type_alias(db: &dyn HirDatabase, t: TypeAliasId) -> Binders<Ty> { let generics = generics(db.upcast(), t.into()); let resolver = t.resolver(db.upcast()); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); let substs = Substs::bound_vars(&generics, DebruijnIndex::INNERMOST); if db.type_alias_data(t).is_extern { Binders::new(substs.len(), Ty::apply(TypeCtor::ForeignType(t), substs)) } else { let type_ref = &db.type_alias_data(t).type_ref; let inner = Ty::from_hir(&ctx, type_ref.as_ref().unwrap_or(&TypeRef::Error)); Binders::new(substs.len(), inner) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum CallableDefId { FunctionId(FunctionId), StructId(StructId), EnumVariantId(EnumVariantId), } impl_from!(FunctionId, StructId, EnumVariantId for CallableDefId); impl CallableDefId { pub fn krate(self, db: &dyn HirDatabase) -> CrateId { let db = db.upcast(); match self { CallableDefId::FunctionId(f) => f.lookup(db).module(db), CallableDefId::StructId(s) => s.lookup(db).container.module(db), CallableDefId::EnumVariantId(e) => e.parent.lookup(db).container.module(db), } .krate } } impl From<CallableDefId> for GenericDefId { fn from(def: CallableDefId) -> GenericDefId { match def { CallableDefId::FunctionId(f) => f.into(), CallableDefId::StructId(s) => s.into(), CallableDefId::EnumVariantId(e) => e.into(), } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum TyDefId { BuiltinType(BuiltinType), AdtId(AdtId), TypeAliasId(TypeAliasId), } impl_from!(BuiltinType, AdtId(StructId, EnumId, UnionId), TypeAliasId for TyDefId); #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum ValueTyDefId { FunctionId(FunctionId), StructId(StructId), UnionId(UnionId), EnumVariantId(EnumVariantId), ConstId(ConstId), StaticId(StaticId), } impl_from!(FunctionId, StructId, UnionId, EnumVariantId, ConstId, StaticId for ValueTyDefId); /// Build the declared type of an item. This depends on the namespace; e.g. for /// `struct Foo(usize)`, we have two types: The type of the struct itself, and /// the constructor function `(usize) -> Foo` which lives in the values /// namespace. pub(crate) fn ty_query(db: &dyn HirDatabase, def: TyDefId) -> Binders<Ty> { match def { TyDefId::BuiltinType(it) => Binders::new(0, type_for_builtin(it)), TyDefId::AdtId(it) => type_for_adt(db, it), TyDefId::TypeAliasId(it) => type_for_type_alias(db, it), } } pub(crate) fn ty_recover(db: &dyn HirDatabase, _cycle: &[String], def: &TyDefId) -> Binders<Ty> { let num_binders = match *def { TyDefId::BuiltinType(_) => 0, TyDefId::AdtId(it) => generics(db.upcast(), it.into()).len(), TyDefId::TypeAliasId(it) => generics(db.upcast(), it.into()).len(), }; Binders::new(num_binders, Ty::Unknown) } pub(crate) fn value_ty_query(db: &dyn HirDatabase, def: ValueTyDefId) -> Binders<Ty> { match def { ValueTyDefId::FunctionId(it) => type_for_fn(db, it), ValueTyDefId::StructId(it) => type_for_struct_constructor(db, it), ValueTyDefId::UnionId(it) => type_for_adt(db, it.into()), ValueTyDefId::EnumVariantId(it) => type_for_enum_variant_constructor(db, it), ValueTyDefId::ConstId(it) => type_for_const(db, it), ValueTyDefId::StaticId(it) => type_for_static(db, it), } } pub(crate) fn impl_self_ty_query(db: &dyn HirDatabase, impl_id: ImplId) -> Binders<Ty> { let impl_data = db.impl_data(impl_id); let resolver = impl_id.resolver(db.upcast()); let generics = generics(db.upcast(), impl_id.into()); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); Binders::new(generics.len(), Ty::from_hir(&ctx, &impl_data.target_type)) } pub(crate) fn impl_self_ty_recover( db: &dyn HirDatabase, _cycle: &[String], impl_id: &ImplId, ) -> Binders<Ty> { let generics = generics(db.upcast(), (*impl_id).into()); Binders::new(generics.len(), Ty::Unknown) } pub(crate) fn impl_trait_query(db: &dyn HirDatabase, impl_id: ImplId) -> Option<Binders<TraitRef>> { let impl_data = db.impl_data(impl_id); let resolver = impl_id.resolver(db.upcast()); let ctx = TyLoweringContext::new(db, &resolver).with_type_param_mode(TypeParamLoweringMode::Variable); let self_ty = db.impl_self_ty(impl_id); let target_trait = impl_data.target_trait.as_ref()?; Some(Binders::new( self_ty.num_binders, TraitRef::from_hir(&ctx, target_trait, Some(self_ty.value))?, )) } pub(crate) fn return_type_impl_traits( db: &dyn HirDatabase, def: hir_def::FunctionId, ) -> Option<Arc<Binders<ReturnTypeImplTraits>>> { // FIXME unify with fn_sig_for_fn instead of doing lowering twice, maybe let data = db.function_data(def); let resolver = def.resolver(db.upcast()); let ctx_ret = TyLoweringContext::new(db, &resolver) .with_impl_trait_mode(ImplTraitLoweringMode::Opaque) .with_type_param_mode(TypeParamLoweringMode::Variable); let _ret = Ty::from_hir(&ctx_ret, &data.ret_type); let generics = generics(db.upcast(), def.into()); let num_binders = generics.len(); let return_type_impl_traits = ReturnTypeImplTraits { impl_traits: ctx_ret.opaque_type_data.into_inner() }; if return_type_impl_traits.impl_traits.is_empty() { None } else { Some(Arc::new(Binders::new(num_binders, return_type_impl_traits))) } }