//! Helper functions for working with def, which don't need to be a separate //! query, but can't be computed directly from `*Data` (ie, which need a `db`). use std::sync::Arc; use hir_def::{ adt::VariantData, db::DefDatabase, generics::{ GenericParams, TypeParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget, }, path::Path, resolver::{HasResolver, TypeNs}, type_ref::TypeRef, AssocContainerId, GenericDefId, Lookup, TraitId, TypeAliasId, TypeParamId, VariantId, }; use hir_expand::name::{name, Name}; use crate::{db::HirDatabase, GenericPredicate, TraitRef}; fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec { let resolver = trait_.resolver(db); // returning the iterator directly doesn't easily work because of // lifetime problems, but since there usually shouldn't be more than a // few direct traits this should be fine (we could even use some kind of // SmallVec if performance is a concern) let generic_params = db.generic_params(trait_.into()); let trait_self = generic_params.find_trait_self_param(); generic_params .where_predicates .iter() .filter_map(|pred| match pred { WherePredicate::ForLifetime { target, bound, .. } | WherePredicate::TypeBound { target, bound } => match target { WherePredicateTypeTarget::TypeRef(TypeRef::Path(p)) if p == &Path::from(name![Self]) => { bound.as_path() } WherePredicateTypeTarget::TypeParam(local_id) if Some(*local_id) == trait_self => { bound.as_path() } _ => None, }, WherePredicate::Lifetime { .. } => None, }) .filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) { Some(TypeNs::TraitId(t)) => Some(t), _ => None, }) .collect() } fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec { // returning the iterator directly doesn't easily work because of // lifetime problems, but since there usually shouldn't be more than a // few direct traits this should be fine (we could even use some kind of // SmallVec if performance is a concern) let generic_params = db.generic_params(trait_ref.trait_.into()); let trait_self = match generic_params.find_trait_self_param() { Some(p) => TypeParamId { parent: trait_ref.trait_.into(), local_id: p }, None => return Vec::new(), }; db.generic_predicates_for_param(trait_self) .iter() .filter_map(|pred| { pred.as_ref().filter_map(|pred| match pred { GenericPredicate::Implemented(tr) => Some(tr.clone()), _ => None, }) }) .map(|pred| pred.subst(&trait_ref.substs)) .collect() } /// Returns an iterator over the whole super trait hierarchy (including the /// trait itself). pub(super) fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec { // we need to take care a bit here to avoid infinite loops in case of cycles // (i.e. if we have `trait A: B; trait B: A;`) let mut result = vec![trait_]; let mut i = 0; while i < result.len() { let t = result[i]; // yeah this is quadratic, but trait hierarchies should be flat // enough that this doesn't matter for tt in direct_super_traits(db, t) { if !result.contains(&tt) { result.push(tt); } } i += 1; } result } /// Given a trait ref (`Self: Trait`), builds all the implied trait refs for /// super traits. The original trait ref will be included. So the difference to /// `all_super_traits` is that we keep track of type parameters; for example if /// we have `Self: Trait` and `Trait: OtherTrait` we'll get /// `Self: OtherTrait`. pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> Vec { // we need to take care a bit here to avoid infinite loops in case of cycles // (i.e. if we have `trait A: B; trait B: A;`) let mut result = vec![trait_ref]; let mut i = 0; while i < result.len() { let t = &result[i]; // yeah this is quadratic, but trait hierarchies should be flat // enough that this doesn't matter for tt in direct_super_trait_refs(db, t) { if !result.iter().any(|tr| tr.trait_ == tt.trait_) { result.push(tt); } } i += 1; } result } pub(super) fn associated_type_by_name_including_super_traits( db: &dyn HirDatabase, trait_ref: TraitRef, name: &Name, ) -> Option<(TraitRef, TypeAliasId)> { all_super_trait_refs(db, trait_ref).into_iter().find_map(|t| { let assoc_type = db.trait_data(t.trait_).associated_type_by_name(name)?; Some((t, assoc_type)) }) } pub(super) fn variant_data(db: &dyn DefDatabase, var: VariantId) -> Arc { match var { VariantId::StructId(it) => db.struct_data(it).variant_data.clone(), VariantId::UnionId(it) => db.union_data(it).variant_data.clone(), VariantId::EnumVariantId(it) => { db.enum_data(it.parent).variants[it.local_id].variant_data.clone() } } } /// Helper for mutating `Arc<[T]>` (i.e. `Arc::make_mut` for Arc slices). /// The underlying values are cloned if there are other strong references. pub(crate) fn make_mut_slice(a: &mut Arc<[T]>) -> &mut [T] { if Arc::get_mut(a).is_none() { *a = a.iter().cloned().collect(); } Arc::get_mut(a).unwrap() } pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics { let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def))); Generics { def, params: db.generic_params(def), parent_generics } } #[derive(Debug)] pub(crate) struct Generics { def: GenericDefId, pub(crate) params: Arc, parent_generics: Option>, } impl Generics { pub(crate) fn iter<'a>( &'a self, ) -> impl Iterator + 'a { self.parent_generics .as_ref() .into_iter() .flat_map(|it| { it.params .types .iter() .map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p)) }) .chain( self.params .types .iter() .map(move |(local_id, p)| (TypeParamId { parent: self.def, local_id }, p)), ) } pub(crate) fn iter_parent<'a>( &'a self, ) -> impl Iterator + 'a { self.parent_generics.as_ref().into_iter().flat_map(|it| { it.params .types .iter() .map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p)) }) } pub(crate) fn len(&self) -> usize { self.len_split().0 } /// (total, parents, child) pub(crate) fn len_split(&self) -> (usize, usize, usize) { let parent = self.parent_generics.as_ref().map_or(0, |p| p.len()); let child = self.params.types.len(); (parent + child, parent, child) } /// (parent total, self param, type param list, impl trait) pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize) { let parent = self.parent_generics.as_ref().map_or(0, |p| p.len()); let self_params = self .params .types .iter() .filter(|(_, p)| p.provenance == TypeParamProvenance::TraitSelf) .count(); let list_params = self .params .types .iter() .filter(|(_, p)| p.provenance == TypeParamProvenance::TypeParamList) .count(); let impl_trait_params = self .params .types .iter() .filter(|(_, p)| p.provenance == TypeParamProvenance::ArgumentImplTrait) .count(); (parent, self_params, list_params, impl_trait_params) } pub(crate) fn param_idx(&self, param: TypeParamId) -> Option { Some(self.find_param(param)?.0) } fn find_param(&self, param: TypeParamId) -> Option<(usize, &TypeParamData)> { if param.parent == self.def { let (idx, (_local_id, data)) = self .params .types .iter() .enumerate() .find(|(_, (idx, _))| *idx == param.local_id) .unwrap(); let (_total, parent_len, _child) = self.len_split(); Some((parent_len + idx, data)) } else { self.parent_generics.as_ref().and_then(|g| g.find_param(param)) } } } fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option { let container = match def { GenericDefId::FunctionId(it) => it.lookup(db).container, GenericDefId::TypeAliasId(it) => it.lookup(db).container, GenericDefId::ConstId(it) => it.lookup(db).container, GenericDefId::EnumVariantId(it) => return Some(it.parent.into()), GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None, }; match container { AssocContainerId::ImplId(it) => Some(it.into()), AssocContainerId::TraitId(it) => Some(it.into()), AssocContainerId::ContainerId(_) => None, } }