//! Collects diagnostics & fixits for a single file. //! //! The tricky bit here is that diagnostics are produced by hir in terms of //! macro-expanded files, but we need to present them to the users in terms of //! original files. So we need to map the ranges. mod fixes; mod field_shorthand; use std::cell::RefCell; use hir::{ db::AstDatabase, diagnostics::{Diagnostic as _, DiagnosticCode, DiagnosticSinkBuilder}, InFile, Semantics, }; use ide_db::{base_db::SourceDatabase, RootDatabase}; use itertools::Itertools; use rustc_hash::FxHashSet; use syntax::{ ast::{self, AstNode}, SyntaxNode, SyntaxNodePtr, TextRange, }; use text_edit::TextEdit; use crate::{FileId, Label, SourceChange}; use self::fixes::DiagnosticWithFix; #[derive(Debug)] pub struct Diagnostic { // pub name: Option<String>, pub message: String, pub range: TextRange, pub severity: Severity, pub fix: Option<Fix>, pub unused: bool, pub code: Option<DiagnosticCode>, } impl Diagnostic { fn error(range: TextRange, message: String) -> Self { Self { message, range, severity: Severity::Error, fix: None, unused: false, code: None } } fn hint(range: TextRange, message: String) -> Self { Self { message, range, severity: Severity::WeakWarning, fix: None, unused: false, code: None, } } fn with_fix(self, fix: Option<Fix>) -> Self { Self { fix, ..self } } fn with_unused(self, unused: bool) -> Self { Self { unused, ..self } } fn with_code(self, code: Option<DiagnosticCode>) -> Self { Self { code, ..self } } } #[derive(Debug)] pub struct Fix { pub label: Label, pub source_change: SourceChange, /// Allows to trigger the fix only when the caret is in the range given pub fix_trigger_range: TextRange, } impl Fix { fn new(label: &str, source_change: SourceChange, fix_trigger_range: TextRange) -> Self { let label = Label::new(label); Self { label, source_change, fix_trigger_range } } } #[derive(Debug, Copy, Clone)] pub enum Severity { Error, WeakWarning, } #[derive(Default, Debug, Clone)] pub struct DiagnosticsConfig { pub disable_experimental: bool, pub disabled: FxHashSet<String>, } pub(crate) fn diagnostics( db: &RootDatabase, config: &DiagnosticsConfig, file_id: FileId, ) -> Vec<Diagnostic> { let _p = profile::span("diagnostics"); let sema = Semantics::new(db); let parse = db.parse(file_id); let mut res = Vec::new(); // [#34344] Only take first 128 errors to prevent slowing down editor/ide, the number 128 is chosen arbitrarily. res.extend( parse .errors() .iter() .take(128) .map(|err| Diagnostic::error(err.range(), format!("Syntax Error: {}", err))), ); for node in parse.tree().syntax().descendants() { check_unnecessary_braces_in_use_statement(&mut res, file_id, &node); field_shorthand::check(&mut res, file_id, &node); } let res = RefCell::new(res); let sink_builder = DiagnosticSinkBuilder::new() .on::<hir::diagnostics::UnresolvedModule, _>(|d| { res.borrow_mut().push(diagnostic_with_fix(d, &sema)); }) .on::<hir::diagnostics::MissingFields, _>(|d| { res.borrow_mut().push(diagnostic_with_fix(d, &sema)); }) .on::<hir::diagnostics::MissingOkOrSomeInTailExpr, _>(|d| { res.borrow_mut().push(diagnostic_with_fix(d, &sema)); }) .on::<hir::diagnostics::NoSuchField, _>(|d| { res.borrow_mut().push(diagnostic_with_fix(d, &sema)); }) .on::<hir::diagnostics::RemoveThisSemicolon, _>(|d| { res.borrow_mut().push(diagnostic_with_fix(d, &sema)); }) .on::<hir::diagnostics::IncorrectCase, _>(|d| { res.borrow_mut().push(warning_with_fix(d, &sema)); }) .on::<hir::diagnostics::ReplaceFilterMapNextWithFindMap, _>(|d| { res.borrow_mut().push(warning_with_fix(d, &sema)); }) .on::<hir::diagnostics::InactiveCode, _>(|d| { // If there's inactive code somewhere in a macro, don't propagate to the call-site. if d.display_source().file_id.expansion_info(db).is_some() { return; } // Override severity and mark as unused. res.borrow_mut().push( Diagnostic::hint( sema.diagnostics_display_range(d.display_source()).range, d.message(), ) .with_unused(true) .with_code(Some(d.code())), ); }) .on::<hir::diagnostics::UnresolvedProcMacro, _>(|d| { // Use more accurate position if available. let display_range = d .precise_location .unwrap_or_else(|| sema.diagnostics_display_range(d.display_source()).range); // FIXME: it would be nice to tell the user whether proc macros are currently disabled res.borrow_mut() .push(Diagnostic::hint(display_range, d.message()).with_code(Some(d.code()))); }) .on::<hir::diagnostics::UnresolvedMacroCall, _>(|d| { let last_path_segment = sema.db.parse_or_expand(d.file).and_then(|root| { d.node .to_node(&root) .path() .and_then(|it| it.segment()) .and_then(|it| it.name_ref()) .map(|it| InFile::new(d.file, SyntaxNodePtr::new(it.syntax()))) }); let diagnostics = last_path_segment.unwrap_or_else(|| d.display_source()); let display_range = sema.diagnostics_display_range(diagnostics).range; res.borrow_mut() .push(Diagnostic::error(display_range, d.message()).with_code(Some(d.code()))); }) // Only collect experimental diagnostics when they're enabled. .filter(|diag| !(diag.is_experimental() && config.disable_experimental)) .filter(|diag| !config.disabled.contains(diag.code().as_str())); // Finalize the `DiagnosticSink` building process. let mut sink = sink_builder // Diagnostics not handled above get no fix and default treatment. .build(|d| { res.borrow_mut().push( Diagnostic::error( sema.diagnostics_display_range(d.display_source()).range, d.message(), ) .with_code(Some(d.code())), ); }); if let Some(m) = sema.to_module_def(file_id) { m.diagnostics(db, &mut sink); }; drop(sink); res.into_inner() } fn diagnostic_with_fix<D: DiagnosticWithFix>(d: &D, sema: &Semantics<RootDatabase>) -> Diagnostic { Diagnostic::error(sema.diagnostics_display_range(d.display_source()).range, d.message()) .with_fix(d.fix(&sema)) .with_code(Some(d.code())) } fn warning_with_fix<D: DiagnosticWithFix>(d: &D, sema: &Semantics<RootDatabase>) -> Diagnostic { Diagnostic::hint(sema.diagnostics_display_range(d.display_source()).range, d.message()) .with_fix(d.fix(&sema)) .with_code(Some(d.code())) } fn check_unnecessary_braces_in_use_statement( acc: &mut Vec<Diagnostic>, file_id: FileId, node: &SyntaxNode, ) -> Option<()> { let use_tree_list = ast::UseTreeList::cast(node.clone())?; if let Some((single_use_tree,)) = use_tree_list.use_trees().collect_tuple() { // If there is a comment inside the bracketed `use`, // assume it is a commented out module path and don't show diagnostic. if use_tree_list.has_inner_comment() { return Some(()); } let use_range = use_tree_list.syntax().text_range(); let edit = text_edit_for_remove_unnecessary_braces_with_self_in_use_statement(&single_use_tree) .unwrap_or_else(|| { let to_replace = single_use_tree.syntax().text().to_string(); let mut edit_builder = TextEdit::builder(); edit_builder.delete(use_range); edit_builder.insert(use_range.start(), to_replace); edit_builder.finish() }); acc.push( Diagnostic::hint(use_range, "Unnecessary braces in use statement".to_string()) .with_fix(Some(Fix::new( "Remove unnecessary braces", SourceChange::from_text_edit(file_id, edit), use_range, ))), ); } Some(()) } fn text_edit_for_remove_unnecessary_braces_with_self_in_use_statement( single_use_tree: &ast::UseTree, ) -> Option<TextEdit> { let use_tree_list_node = single_use_tree.syntax().parent()?; if single_use_tree.path()?.segment()?.self_token().is_some() { let start = use_tree_list_node.prev_sibling_or_token()?.text_range().start(); let end = use_tree_list_node.text_range().end(); return Some(TextEdit::delete(TextRange::new(start, end))); } None } #[cfg(test)] mod tests { use expect_test::{expect, Expect}; use stdx::trim_indent; use test_utils::assert_eq_text; use crate::{fixture, DiagnosticsConfig}; /// Takes a multi-file input fixture with annotated cursor positions, /// and checks that: /// * a diagnostic is produced /// * this diagnostic fix trigger range touches the input cursor position /// * that the contents of the file containing the cursor match `after` after the diagnostic fix is applied pub(crate) fn check_fix(ra_fixture_before: &str, ra_fixture_after: &str) { let after = trim_indent(ra_fixture_after); let (analysis, file_position) = fixture::position(ra_fixture_before); let diagnostic = analysis .diagnostics(&DiagnosticsConfig::default(), file_position.file_id) .unwrap() .pop() .unwrap(); let fix = diagnostic.fix.unwrap(); let actual = { let file_id = *fix.source_change.source_file_edits.keys().next().unwrap(); let mut actual = analysis.file_text(file_id).unwrap().to_string(); for edit in fix.source_change.source_file_edits.values() { edit.apply(&mut actual); } actual }; assert_eq_text!(&after, &actual); assert!( fix.fix_trigger_range.contains_inclusive(file_position.offset), "diagnostic fix range {:?} does not touch cursor position {:?}", fix.fix_trigger_range, file_position.offset ); } /// Takes a multi-file input fixture with annotated cursor position and checks that no diagnostics /// apply to the file containing the cursor. pub(crate) fn check_no_diagnostics(ra_fixture: &str) { let (analysis, files) = fixture::files(ra_fixture); let diagnostics = files .into_iter() .flat_map(|file_id| { analysis.diagnostics(&DiagnosticsConfig::default(), file_id).unwrap() }) .collect::<Vec<_>>(); assert_eq!(diagnostics.len(), 0, "unexpected diagnostics:\n{:#?}", diagnostics); } fn check_expect(ra_fixture: &str, expect: Expect) { let (analysis, file_id) = fixture::file(ra_fixture); let diagnostics = analysis.diagnostics(&DiagnosticsConfig::default(), file_id).unwrap(); expect.assert_debug_eq(&diagnostics) } #[test] fn test_wrap_return_type_option() { check_fix( r#" //- /main.rs crate:main deps:core use core::option::Option::{self, Some, None}; fn div(x: i32, y: i32) -> Option<i32> { if y == 0 { return None; } x / y$0 } //- /core/lib.rs crate:core pub mod result { pub enum Result<T, E> { Ok(T), Err(E) } } pub mod option { pub enum Option<T> { Some(T), None } } "#, r#" use core::option::Option::{self, Some, None}; fn div(x: i32, y: i32) -> Option<i32> { if y == 0 { return None; } Some(x / y) } "#, ); } #[test] fn test_wrap_return_type() { check_fix( r#" //- /main.rs crate:main deps:core use core::result::Result::{self, Ok, Err}; fn div(x: i32, y: i32) -> Result<i32, ()> { if y == 0 { return Err(()); } x / y$0 } //- /core/lib.rs crate:core pub mod result { pub enum Result<T, E> { Ok(T), Err(E) } } pub mod option { pub enum Option<T> { Some(T), None } } "#, r#" use core::result::Result::{self, Ok, Err}; fn div(x: i32, y: i32) -> Result<i32, ()> { if y == 0 { return Err(()); } Ok(x / y) } "#, ); } #[test] fn test_wrap_return_type_handles_generic_functions() { check_fix( r#" //- /main.rs crate:main deps:core use core::result::Result::{self, Ok, Err}; fn div<T>(x: T) -> Result<T, i32> { if x == 0 { return Err(7); } $0x } //- /core/lib.rs crate:core pub mod result { pub enum Result<T, E> { Ok(T), Err(E) } } pub mod option { pub enum Option<T> { Some(T), None } } "#, r#" use core::result::Result::{self, Ok, Err}; fn div<T>(x: T) -> Result<T, i32> { if x == 0 { return Err(7); } Ok(x) } "#, ); } #[test] fn test_wrap_return_type_handles_type_aliases() { check_fix( r#" //- /main.rs crate:main deps:core use core::result::Result::{self, Ok, Err}; type MyResult<T> = Result<T, ()>; fn div(x: i32, y: i32) -> MyResult<i32> { if y == 0 { return Err(()); } x $0/ y } //- /core/lib.rs crate:core pub mod result { pub enum Result<T, E> { Ok(T), Err(E) } } pub mod option { pub enum Option<T> { Some(T), None } } "#, r#" use core::result::Result::{self, Ok, Err}; type MyResult<T> = Result<T, ()>; fn div(x: i32, y: i32) -> MyResult<i32> { if y == 0 { return Err(()); } Ok(x / y) } "#, ); } #[test] fn test_wrap_return_type_not_applicable_when_expr_type_does_not_match_ok_type() { check_no_diagnostics( r#" //- /main.rs crate:main deps:core use core::result::Result::{self, Ok, Err}; fn foo() -> Result<(), i32> { 0 } //- /core/lib.rs crate:core pub mod result { pub enum Result<T, E> { Ok(T), Err(E) } } pub mod option { pub enum Option<T> { Some(T), None } } "#, ); } #[test] fn test_wrap_return_type_not_applicable_when_return_type_is_not_result_or_option() { check_no_diagnostics( r#" //- /main.rs crate:main deps:core use core::result::Result::{self, Ok, Err}; enum SomeOtherEnum { Ok(i32), Err(String) } fn foo() -> SomeOtherEnum { 0 } //- /core/lib.rs crate:core pub mod result { pub enum Result<T, E> { Ok(T), Err(E) } } pub mod option { pub enum Option<T> { Some(T), None } } "#, ); } #[test] fn test_fill_struct_fields_empty() { check_fix( r#" struct TestStruct { one: i32, two: i64 } fn test_fn() { let s = TestStruct {$0}; } "#, r#" struct TestStruct { one: i32, two: i64 } fn test_fn() { let s = TestStruct { one: (), two: ()}; } "#, ); } #[test] fn test_fill_struct_fields_self() { check_fix( r#" struct TestStruct { one: i32 } impl TestStruct { fn test_fn() { let s = Self {$0}; } } "#, r#" struct TestStruct { one: i32 } impl TestStruct { fn test_fn() { let s = Self { one: ()}; } } "#, ); } #[test] fn test_fill_struct_fields_enum() { check_fix( r#" enum Expr { Bin { lhs: Box<Expr>, rhs: Box<Expr> } } impl Expr { fn new_bin(lhs: Box<Expr>, rhs: Box<Expr>) -> Expr { Expr::Bin {$0 } } } "#, r#" enum Expr { Bin { lhs: Box<Expr>, rhs: Box<Expr> } } impl Expr { fn new_bin(lhs: Box<Expr>, rhs: Box<Expr>) -> Expr { Expr::Bin { lhs: (), rhs: () } } } "#, ); } #[test] fn test_fill_struct_fields_partial() { check_fix( r#" struct TestStruct { one: i32, two: i64 } fn test_fn() { let s = TestStruct{ two: 2$0 }; } "#, r" struct TestStruct { one: i32, two: i64 } fn test_fn() { let s = TestStruct{ two: 2, one: () }; } ", ); } #[test] fn test_fill_struct_fields_no_diagnostic() { check_no_diagnostics( r" struct TestStruct { one: i32, two: i64 } fn test_fn() { let one = 1; let s = TestStruct{ one, two: 2 }; } ", ); } #[test] fn test_fill_struct_fields_no_diagnostic_on_spread() { check_no_diagnostics( r" struct TestStruct { one: i32, two: i64 } fn test_fn() { let one = 1; let s = TestStruct{ ..a }; } ", ); } #[test] fn test_unresolved_module_diagnostic() { check_expect( r#"mod foo;"#, expect![[r#" [ Diagnostic { message: "unresolved module", range: 0..8, severity: Error, fix: Some( Fix { label: "Create module", source_change: SourceChange { source_file_edits: {}, file_system_edits: [ CreateFile { dst: AnchoredPathBuf { anchor: FileId( 0, ), path: "foo.rs", }, initial_contents: "", }, ], is_snippet: false, }, fix_trigger_range: 0..8, }, ), unused: false, code: Some( DiagnosticCode( "unresolved-module", ), ), }, ] "#]], ); } #[test] fn test_unresolved_macro_range() { check_expect( r#"foo::bar!(92);"#, expect![[r#" [ Diagnostic { message: "unresolved macro call", range: 5..8, severity: Error, fix: None, unused: false, code: Some( DiagnosticCode( "unresolved-macro-call", ), ), }, ] "#]], ); } #[test] fn range_mapping_out_of_macros() { // FIXME: this is very wrong, but somewhat tricky to fix. check_fix( r#" fn some() {} fn items() {} fn here() {} macro_rules! id { ($($tt:tt)*) => { $($tt)*}; } fn main() { let _x = id![Foo { a: $042 }]; } pub struct Foo { pub a: i32, pub b: i32 } "#, r#" fn some(, b: ()) {} fn items() {} fn here() {} macro_rules! id { ($($tt:tt)*) => { $($tt)*}; } fn main() { let _x = id![Foo { a: 42 }]; } pub struct Foo { pub a: i32, pub b: i32 } "#, ); } #[test] fn test_check_unnecessary_braces_in_use_statement() { check_no_diagnostics( r#" use a; use a::{c, d::e}; mod a { mod c {} mod d { mod e {} } } "#, ); check_no_diagnostics( r#" use a; use a::{ c, // d::e }; mod a { mod c {} mod d { mod e {} } } "#, ); check_fix( r" mod b {} use {$0b}; ", r" mod b {} use b; ", ); check_fix( r" mod b {} use {b$0}; ", r" mod b {} use b; ", ); check_fix( r" mod a { mod c {} } use a::{c$0}; ", r" mod a { mod c {} } use a::c; ", ); check_fix( r" mod a {} use a::{self$0}; ", r" mod a {} use a; ", ); check_fix( r" mod a { mod c {} mod d { mod e {} } } use a::{c, d::{e$0}}; ", r" mod a { mod c {} mod d { mod e {} } } use a::{c, d::e}; ", ); } #[test] fn test_add_field_from_usage() { check_fix( r" fn main() { Foo { bar: 3, baz$0: false}; } struct Foo { bar: i32 } ", r" fn main() { Foo { bar: 3, baz: false}; } struct Foo { bar: i32, baz: bool } ", ) } #[test] fn test_add_field_in_other_file_from_usage() { check_fix( r#" //- /main.rs mod foo; fn main() { foo::Foo { bar: 3, $0baz: false}; } //- /foo.rs struct Foo { bar: i32 } "#, r#" struct Foo { bar: i32, pub(crate) baz: bool } "#, ) } #[test] fn test_disabled_diagnostics() { let mut config = DiagnosticsConfig::default(); config.disabled.insert("unresolved-module".into()); let (analysis, file_id) = fixture::file(r#"mod foo;"#); let diagnostics = analysis.diagnostics(&config, file_id).unwrap(); assert!(diagnostics.is_empty()); let diagnostics = analysis.diagnostics(&DiagnosticsConfig::default(), file_id).unwrap(); assert!(!diagnostics.is_empty()); } #[test] fn test_rename_incorrect_case() { check_fix( r#" pub struct test_struct$0 { one: i32 } pub fn some_fn(val: test_struct) -> test_struct { test_struct { one: val.one + 1 } } "#, r#" pub struct TestStruct { one: i32 } pub fn some_fn(val: TestStruct) -> TestStruct { TestStruct { one: val.one + 1 } } "#, ); check_fix( r#" pub fn some_fn(NonSnakeCase$0: u8) -> u8 { NonSnakeCase } "#, r#" pub fn some_fn(non_snake_case: u8) -> u8 { non_snake_case } "#, ); check_fix( r#" pub fn SomeFn$0(val: u8) -> u8 { if val != 0 { SomeFn(val - 1) } else { val } } "#, r#" pub fn some_fn(val: u8) -> u8 { if val != 0 { some_fn(val - 1) } else { val } } "#, ); check_fix( r#" fn some_fn() { let whatAWeird_Formatting$0 = 10; another_func(whatAWeird_Formatting); } "#, r#" fn some_fn() { let what_a_weird_formatting = 10; another_func(what_a_weird_formatting); } "#, ); } #[test] fn test_uppercase_const_no_diagnostics() { check_no_diagnostics( r#" fn foo() { const ANOTHER_ITEM$0: &str = "some_item"; } "#, ); } #[test] fn test_rename_incorrect_case_struct_method() { check_fix( r#" pub struct TestStruct; impl TestStruct { pub fn SomeFn$0() -> TestStruct { TestStruct } } "#, r#" pub struct TestStruct; impl TestStruct { pub fn some_fn() -> TestStruct { TestStruct } } "#, ); } #[test] fn test_single_incorrect_case_diagnostic_in_function_name_issue_6970() { let input = r#"fn FOO$0() {}"#; let expected = r#"fn foo() {}"#; let (analysis, file_position) = fixture::position(input); let diagnostics = analysis.diagnostics(&DiagnosticsConfig::default(), file_position.file_id).unwrap(); assert_eq!(diagnostics.len(), 1); check_fix(input, expected); } }