mod format;
mod html;
mod injection;
mod macro_rules;
pub(crate) mod tags;
#[cfg(test)]
mod tests;
use hir::{AsAssocItem, Local, Name, Semantics, VariantDef};
use ide_db::{
defs::{Definition, NameClass, NameRefClass},
RootDatabase,
};
use rustc_hash::FxHashMap;
use syntax::{
ast::{self, HasFormatSpecifier},
AstNode, AstToken, Direction, NodeOrToken, SyntaxElement,
SyntaxKind::{self, *},
SyntaxNode, SyntaxToken, TextRange, WalkEvent, T,
};
use crate::{
syntax_highlighting::{
format::FormatStringHighlighter, macro_rules::MacroRulesHighlighter, tags::Highlight,
},
FileId, HighlightModifier, HighlightTag, SymbolKind,
};
pub(crate) use html::highlight_as_html;
#[derive(Debug, Clone)]
pub struct HighlightedRange {
pub range: TextRange,
pub highlight: Highlight,
pub binding_hash: Option,
}
// Feature: Semantic Syntax Highlighting
//
// rust-analyzer highlights the code semantically.
// For example, `bar` in `foo::Bar` might be colored differently depending on whether `Bar` is an enum or a trait.
// rust-analyzer does not specify colors directly, instead it assigns tag (like `struct`) and a set of modifiers (like `declaration`) to each token.
// It's up to the client to map those to specific colors.
//
// The general rule is that a reference to an entity gets colored the same way as the entity itself.
// We also give special modifier for `mut` and `&mut` local variables.
pub(crate) fn highlight(
db: &RootDatabase,
file_id: FileId,
range_to_highlight: Option,
syntactic_name_ref_highlighting: bool,
) -> Vec {
let _p = profile::span("highlight");
let sema = Semantics::new(db);
// Determine the root based on the given range.
let (root, range_to_highlight) = {
let source_file = sema.parse(file_id);
match range_to_highlight {
Some(range) => {
let node = match source_file.syntax().covering_element(range) {
NodeOrToken::Node(it) => it,
NodeOrToken::Token(it) => it.parent(),
};
(node, range)
}
None => (source_file.syntax().clone(), source_file.syntax().text_range()),
}
};
let mut bindings_shadow_count: FxHashMap = FxHashMap::default();
// We use a stack for the DFS traversal below.
// When we leave a node, the we use it to flatten the highlighted ranges.
let mut stack = HighlightedRangeStack::new();
let mut current_macro_call: Option = None;
let mut current_macro_rules: Option = None;
let mut format_string_highlighter = FormatStringHighlighter::default();
let mut macro_rules_highlighter = MacroRulesHighlighter::default();
let mut inside_attribute = false;
// Walk all nodes, keeping track of whether we are inside a macro or not.
// If in macro, expand it first and highlight the expanded code.
for event in root.preorder_with_tokens() {
match &event {
WalkEvent::Enter(_) => stack.push(),
WalkEvent::Leave(_) => stack.pop(),
};
let event_range = match &event {
WalkEvent::Enter(it) => it.text_range(),
WalkEvent::Leave(it) => it.text_range(),
};
// Element outside of the viewport, no need to highlight
if range_to_highlight.intersect(event_range).is_none() {
continue;
}
// Track "inside macro" state
match event.clone().map(|it| it.into_node().and_then(ast::MacroCall::cast)) {
WalkEvent::Enter(Some(mc)) => {
if let Some(range) = macro_call_range(&mc) {
stack.add(HighlightedRange {
range,
highlight: HighlightTag::Symbol(SymbolKind::Macro).into(),
binding_hash: None,
});
}
current_macro_call = Some(mc.clone());
continue;
}
WalkEvent::Leave(Some(mc)) => {
assert_eq!(current_macro_call, Some(mc));
current_macro_call = None;
format_string_highlighter = FormatStringHighlighter::default();
}
_ => (),
}
match event.clone().map(|it| it.into_node().and_then(ast::MacroRules::cast)) {
WalkEvent::Enter(Some(mac)) => {
macro_rules_highlighter.init();
current_macro_rules = Some(mac);
continue;
}
WalkEvent::Leave(Some(mac)) => {
assert_eq!(current_macro_rules, Some(mac));
current_macro_rules = None;
macro_rules_highlighter = MacroRulesHighlighter::default();
}
_ => (),
}
match &event {
// Check for Rust code in documentation
WalkEvent::Leave(NodeOrToken::Node(node)) => {
if ast::Attr::can_cast(node.kind()) {
inside_attribute = false
}
if let Some((doctest, range_mapping, new_comments)) =
injection::extract_doc_comments(node)
{
injection::highlight_doc_comment(
doctest,
range_mapping,
new_comments,
&mut stack,
);
}
}
WalkEvent::Enter(NodeOrToken::Node(node)) if ast::Attr::can_cast(node.kind()) => {
inside_attribute = true
}
_ => (),
}
let element = match event {
WalkEvent::Enter(it) => it,
WalkEvent::Leave(_) => continue,
};
let range = element.text_range();
if current_macro_rules.is_some() {
if let Some(tok) = element.as_token() {
macro_rules_highlighter.advance(tok);
}
}
let element_to_highlight = if current_macro_call.is_some() && element.kind() != COMMENT {
// Inside a macro -- expand it first
let token = match element.clone().into_token() {
Some(it) if it.parent().kind() == TOKEN_TREE => it,
_ => continue,
};
let token = sema.descend_into_macros(token.clone());
let parent = token.parent();
format_string_highlighter.check_for_format_string(&parent);
// We only care Name and Name_ref
match (token.kind(), parent.kind()) {
(IDENT, NAME) | (IDENT, NAME_REF) => parent.into(),
_ => token.into(),
}
} else {
element.clone()
};
if let Some(token) = element.as_token().cloned().and_then(ast::String::cast) {
if token.is_raw() {
let expanded = element_to_highlight.as_token().unwrap().clone();
if injection::highlight_injection(&mut stack, &sema, token, expanded).is_some() {
continue;
}
}
}
if let Some((mut highlight, binding_hash)) = highlight_element(
&sema,
&mut bindings_shadow_count,
syntactic_name_ref_highlighting,
element_to_highlight.clone(),
) {
if inside_attribute {
highlight = highlight | HighlightModifier::Attribute;
}
if macro_rules_highlighter.highlight(element_to_highlight.clone()).is_none() {
stack.add(HighlightedRange { range, highlight, binding_hash });
}
if let Some(string) =
element_to_highlight.as_token().cloned().and_then(ast::String::cast)
{
format_string_highlighter.highlight_format_string(&mut stack, &string, range);
// Highlight escape sequences
if let Some(char_ranges) = string.char_ranges() {
stack.push();
for (piece_range, _) in char_ranges.iter().filter(|(_, char)| char.is_ok()) {
if string.text()[piece_range.start().into()..].starts_with('\\') {
stack.add(HighlightedRange {
range: piece_range + range.start(),
highlight: HighlightTag::EscapeSequence.into(),
binding_hash: None,
});
}
}
stack.pop_and_inject(None);
}
}
}
}
stack.flattened()
}
#[derive(Debug)]
struct HighlightedRangeStack {
stack: Vec>,
}
/// We use a stack to implement the flattening logic for the highlighted
/// syntax ranges.
impl HighlightedRangeStack {
fn new() -> Self {
Self { stack: vec![Vec::new()] }
}
fn push(&mut self) {
self.stack.push(Vec::new());
}
/// Flattens the highlighted ranges.
///
/// For example `#[cfg(feature = "foo")]` contains the nested ranges:
/// 1) parent-range: Attribute [0, 23)
/// 2) child-range: String [16, 21)
///
/// The following code implements the flattening, for our example this results to:
/// `[Attribute [0, 16), String [16, 21), Attribute [21, 23)]`
fn pop(&mut self) {
let children = self.stack.pop().unwrap();
let prev = self.stack.last_mut().unwrap();
let needs_flattening = !children.is_empty()
&& !prev.is_empty()
&& prev.last().unwrap().range.contains_range(children.first().unwrap().range);
if !needs_flattening {
prev.extend(children);
} else {
let mut parent = prev.pop().unwrap();
for ele in children {
assert!(parent.range.contains_range(ele.range));
let cloned = Self::intersect(&mut parent, &ele);
if !parent.range.is_empty() {
prev.push(parent);
}
prev.push(ele);
parent = cloned;
}
if !parent.range.is_empty() {
prev.push(parent);
}
}
}
/// Intersects the `HighlightedRange` `parent` with `child`.
/// `parent` is mutated in place, becoming the range before `child`.
/// Returns the range (of the same type as `parent`) *after* `child`.
fn intersect(parent: &mut HighlightedRange, child: &HighlightedRange) -> HighlightedRange {
assert!(parent.range.contains_range(child.range));
let mut cloned = parent.clone();
parent.range = TextRange::new(parent.range.start(), child.range.start());
cloned.range = TextRange::new(child.range.end(), cloned.range.end());
cloned
}
/// Remove the `HighlightRange` of `parent` that's currently covered by `child`.
fn intersect_partial(parent: &mut HighlightedRange, child: &HighlightedRange) {
assert!(
parent.range.start() <= child.range.start()
&& parent.range.end() >= child.range.start()
&& child.range.end() > parent.range.end()
);
parent.range = TextRange::new(parent.range.start(), child.range.start());
}
/// Similar to `pop`, but can modify arbitrary prior ranges (where `pop`)
/// can only modify the last range currently on the stack.
/// Can be used to do injections that span multiple ranges, like the
/// doctest injection below.
/// If `overwrite_parent` is non-optional, the highlighting of the parent range
/// is overwritten with the argument.
///
/// Note that `pop` can be simulated by `pop_and_inject(false)` but the
/// latter is computationally more expensive.
fn pop_and_inject(&mut self, overwrite_parent: Option) {
let mut children = self.stack.pop().unwrap();
let prev = self.stack.last_mut().unwrap();
children.sort_by_key(|range| range.range.start());
prev.sort_by_key(|range| range.range.start());
for child in children {
if let Some(idx) =
prev.iter().position(|parent| parent.range.contains_range(child.range))
{
if let Some(tag) = overwrite_parent {
prev[idx].highlight = tag;
}
let cloned = Self::intersect(&mut prev[idx], &child);
let insert_idx = if prev[idx].range.is_empty() {
prev.remove(idx);
idx
} else {
idx + 1
};
prev.insert(insert_idx, child);
if !cloned.range.is_empty() {
prev.insert(insert_idx + 1, cloned);
}
} else {
let maybe_idx =
prev.iter().position(|parent| parent.range.contains(child.range.start()));
match (overwrite_parent, maybe_idx) {
(Some(_), Some(idx)) => {
Self::intersect_partial(&mut prev[idx], &child);
let insert_idx = if prev[idx].range.is_empty() {
prev.remove(idx);
idx
} else {
idx + 1
};
prev.insert(insert_idx, child);
}
(_, None) => {
let idx = prev
.binary_search_by_key(&child.range.start(), |range| range.range.start())
.unwrap_or_else(|x| x);
prev.insert(idx, child);
}
_ => {
unreachable!("child range should be completely contained in parent range");
}
}
}
}
}
fn add(&mut self, range: HighlightedRange) {
self.stack
.last_mut()
.expect("during DFS traversal, the stack must not be empty")
.push(range)
}
fn flattened(mut self) -> Vec {
assert_eq!(
self.stack.len(),
1,
"after DFS traversal, the stack should only contain a single element"
);
let mut res = self.stack.pop().unwrap();
res.sort_by_key(|range| range.range.start());
// Check that ranges are sorted and disjoint
for (left, right) in res.iter().zip(res.iter().skip(1)) {
assert!(
left.range.end() <= right.range.start(),
"left: {:#?}, right: {:#?}",
left,
right
);
}
res
}
}
fn macro_call_range(macro_call: &ast::MacroCall) -> Option {
let path = macro_call.path()?;
let name_ref = path.segment()?.name_ref()?;
let range_start = name_ref.syntax().text_range().start();
let mut range_end = name_ref.syntax().text_range().end();
for sibling in path.syntax().siblings_with_tokens(Direction::Next) {
match sibling.kind() {
T![!] | IDENT => range_end = sibling.text_range().end(),
_ => (),
}
}
Some(TextRange::new(range_start, range_end))
}
/// Returns true if the parent nodes of `node` all match the `SyntaxKind`s in `kinds` exactly.
fn parents_match(mut node: NodeOrToken, mut kinds: &[SyntaxKind]) -> bool {
while let (Some(parent), [kind, rest @ ..]) = (&node.parent(), kinds) {
if parent.kind() != *kind {
return false;
}
// FIXME: Would be nice to get parent out of the match, but binding by-move and by-value
// in the same pattern is unstable: rust-lang/rust#68354.
node = node.parent().unwrap().into();
kinds = rest;
}
// Only true if we matched all expected kinds
kinds.len() == 0
}
fn is_consumed_lvalue(
node: NodeOrToken,
local: &Local,
db: &RootDatabase,
) -> bool {
// When lvalues are passed as arguments and they're not Copy, then mark them as Consuming.
parents_match(node, &[PATH_SEGMENT, PATH, PATH_EXPR, ARG_LIST]) && !local.ty(db).is_copy(db)
}
fn highlight_element(
sema: &Semantics,
bindings_shadow_count: &mut FxHashMap,
syntactic_name_ref_highlighting: bool,
element: SyntaxElement,
) -> Option<(Highlight, Option)> {
let db = sema.db;
let mut binding_hash = None;
let highlight: Highlight = match element.kind() {
FN => {
bindings_shadow_count.clear();
return None;
}
// Highlight definitions depending on the "type" of the definition.
NAME => {
let name = element.into_node().and_then(ast::Name::cast).unwrap();
let name_kind = NameClass::classify(sema, &name);
if let Some(NameClass::Definition(Definition::Local(local))) = &name_kind {
if let Some(name) = local.name(db) {
let shadow_count = bindings_shadow_count.entry(name.clone()).or_default();
*shadow_count += 1;
binding_hash = Some(calc_binding_hash(&name, *shadow_count))
}
};
match name_kind {
Some(NameClass::ExternCrate(_)) => HighlightTag::Symbol(SymbolKind::Module).into(),
Some(NameClass::Definition(def)) => {
highlight_def(db, def) | HighlightModifier::Definition
}
Some(NameClass::ConstReference(def)) => highlight_def(db, def),
Some(NameClass::PatFieldShorthand { field_ref, .. }) => {
let mut h = HighlightTag::Symbol(SymbolKind::Field).into();
if let Definition::Field(field) = field_ref {
if let VariantDef::Union(_) = field.parent_def(db) {
h |= HighlightModifier::Unsafe;
}
}
h
}
None => highlight_name_by_syntax(name) | HighlightModifier::Definition,
}
}
// Highlight references like the definitions they resolve to
NAME_REF if element.ancestors().any(|it| it.kind() == ATTR) => {
// even though we track whether we are in an attribute or not we still need this special case
// as otherwise we would emit unresolved references for name refs inside attributes
Highlight::from(HighlightTag::Symbol(SymbolKind::Function))
}
NAME_REF => {
let name_ref = element.into_node().and_then(ast::NameRef::cast).unwrap();
highlight_func_by_name_ref(sema, &name_ref).unwrap_or_else(|| {
match NameRefClass::classify(sema, &name_ref) {
Some(name_kind) => match name_kind {
NameRefClass::ExternCrate(_) => {
HighlightTag::Symbol(SymbolKind::Module).into()
}
NameRefClass::Definition(def) => {
if let Definition::Local(local) = &def {
if let Some(name) = local.name(db) {
let shadow_count =
bindings_shadow_count.entry(name.clone()).or_default();
binding_hash = Some(calc_binding_hash(&name, *shadow_count))
}
};
let mut h = highlight_def(db, def);
if let Definition::Local(local) = &def {
if is_consumed_lvalue(name_ref.syntax().clone().into(), local, db) {
h |= HighlightModifier::Consuming;
}
}
if let Some(parent) = name_ref.syntax().parent() {
if matches!(parent.kind(), FIELD_EXPR | RECORD_PAT_FIELD) {
if let Definition::Field(field) = def {
if let VariantDef::Union(_) = field.parent_def(db) {
h |= HighlightModifier::Unsafe;
}
}
}
}
h
}
NameRefClass::FieldShorthand { .. } => {
HighlightTag::Symbol(SymbolKind::Field).into()
}
},
None if syntactic_name_ref_highlighting => {
highlight_name_ref_by_syntax(name_ref, sema)
}
None => HighlightTag::UnresolvedReference.into(),
}
})
}
// Simple token-based highlighting
COMMENT => {
let comment = element.into_token().and_then(ast::Comment::cast)?;
let h = HighlightTag::Comment;
match comment.kind().doc {
Some(_) => h | HighlightModifier::Documentation,
None => h.into(),
}
}
STRING | BYTE_STRING => HighlightTag::StringLiteral.into(),
ATTR => HighlightTag::Attribute.into(),
INT_NUMBER | FLOAT_NUMBER => HighlightTag::NumericLiteral.into(),
BYTE => HighlightTag::ByteLiteral.into(),
CHAR => HighlightTag::CharLiteral.into(),
QUESTION => Highlight::new(HighlightTag::Operator) | HighlightModifier::ControlFlow,
LIFETIME => {
let h = Highlight::new(HighlightTag::Symbol(SymbolKind::LifetimeParam));
match element.parent().map(|it| it.kind()) {
Some(LIFETIME_PARAM) | Some(LABEL) => h | HighlightModifier::Definition,
_ => h,
}
}
p if p.is_punct() => match p {
T![&] => {
let h = HighlightTag::Operator.into();
let is_unsafe = element
.parent()
.and_then(ast::RefExpr::cast)
.map(|ref_expr| sema.is_unsafe_ref_expr(&ref_expr))
.unwrap_or(false);
if is_unsafe {
h | HighlightModifier::Unsafe
} else {
h
}
}
T![::] | T![->] | T![=>] | T![..] | T![=] | T![@] | T![.] => {
HighlightTag::Operator.into()
}
T![!] if element.parent().and_then(ast::MacroCall::cast).is_some() => {
HighlightTag::Symbol(SymbolKind::Macro).into()
}
T![!] if element.parent().and_then(ast::NeverType::cast).is_some() => {
HighlightTag::BuiltinType.into()
}
T![*] if element.parent().and_then(ast::PtrType::cast).is_some() => {
HighlightTag::Keyword.into()
}
T![*] if element.parent().and_then(ast::PrefixExpr::cast).is_some() => {
let prefix_expr = element.parent().and_then(ast::PrefixExpr::cast)?;
let expr = prefix_expr.expr()?;
let ty = sema.type_of_expr(&expr)?;
if ty.is_raw_ptr() {
HighlightTag::Operator | HighlightModifier::Unsafe
} else if let Some(ast::PrefixOp::Deref) = prefix_expr.op_kind() {
HighlightTag::Operator.into()
} else {
HighlightTag::Punctuation.into()
}
}
T![-] if element.parent().and_then(ast::PrefixExpr::cast).is_some() => {
let prefix_expr = element.parent().and_then(ast::PrefixExpr::cast)?;
let expr = prefix_expr.expr()?;
match expr {
ast::Expr::Literal(_) => HighlightTag::NumericLiteral,
_ => HighlightTag::Operator,
}
.into()
}
_ if element.parent().and_then(ast::PrefixExpr::cast).is_some() => {
HighlightTag::Operator.into()
}
_ if element.parent().and_then(ast::BinExpr::cast).is_some() => {
HighlightTag::Operator.into()
}
_ if element.parent().and_then(ast::RangeExpr::cast).is_some() => {
HighlightTag::Operator.into()
}
_ if element.parent().and_then(ast::RangePat::cast).is_some() => {
HighlightTag::Operator.into()
}
_ if element.parent().and_then(ast::RestPat::cast).is_some() => {
HighlightTag::Operator.into()
}
_ if element.parent().and_then(ast::Attr::cast).is_some() => {
HighlightTag::Attribute.into()
}
_ => HighlightTag::Punctuation.into(),
},
k if k.is_keyword() => {
let h = Highlight::new(HighlightTag::Keyword);
match k {
T![break]
| T![continue]
| T![else]
| T![if]
| T![loop]
| T![match]
| T![return]
| T![while]
| T![in] => h | HighlightModifier::ControlFlow,
T![for] if !is_child_of_impl(&element) => h | HighlightModifier::ControlFlow,
T![unsafe] => h | HighlightModifier::Unsafe,
T![true] | T![false] => HighlightTag::BoolLiteral.into(),
T![self] => {
let self_param_is_mut = element
.parent()
.and_then(ast::SelfParam::cast)
.and_then(|p| p.mut_token())
.is_some();
let self_path = &element
.parent()
.as_ref()
.and_then(SyntaxNode::parent)
.and_then(ast::Path::cast)
.and_then(|p| sema.resolve_path(&p));
let mut h = HighlightTag::Symbol(SymbolKind::SelfParam).into();
if self_param_is_mut
|| matches!(self_path,
Some(hir::PathResolution::Local(local))
if local.is_self(db)
&& (local.is_mut(db) || local.ty(db).is_mutable_reference())
)
{
h |= HighlightModifier::Mutable
}
if let Some(hir::PathResolution::Local(local)) = self_path {
if is_consumed_lvalue(element, &local, db) {
h |= HighlightModifier::Consuming;
}
}
h
}
T![ref] => element
.parent()
.and_then(ast::IdentPat::cast)
.and_then(|ident_pat| {
if sema.is_unsafe_ident_pat(&ident_pat) {
Some(HighlightModifier::Unsafe)
} else {
None
}
})
.map(|modifier| h | modifier)
.unwrap_or(h),
_ => h,
}
}
_ => return None,
};
return Some((highlight, binding_hash));
fn calc_binding_hash(name: &Name, shadow_count: u32) -> u64 {
fn hash(x: T) -> u64 {
use std::{collections::hash_map::DefaultHasher, hash::Hasher};
let mut hasher = DefaultHasher::new();
x.hash(&mut hasher);
hasher.finish()
}
hash((name, shadow_count))
}
}
fn is_child_of_impl(element: &SyntaxElement) -> bool {
match element.parent() {
Some(e) => e.kind() == IMPL,
_ => false,
}
}
fn highlight_func_by_name_ref(
sema: &Semantics,
name_ref: &ast::NameRef,
) -> Option {
let method_call = name_ref.syntax().parent().and_then(ast::MethodCallExpr::cast)?;
highlight_method_call(sema, &method_call)
}
fn highlight_method_call(
sema: &Semantics,
method_call: &ast::MethodCallExpr,
) -> Option {
let func = sema.resolve_method_call(&method_call)?;
let mut h = HighlightTag::Symbol(SymbolKind::Function).into();
h |= HighlightModifier::Associated;
if func.is_unsafe(sema.db) || sema.is_unsafe_method_call(&method_call) {
h |= HighlightModifier::Unsafe;
}
if let Some(self_param) = func.self_param(sema.db) {
match self_param.access(sema.db) {
hir::Access::Shared => (),
hir::Access::Exclusive => h |= HighlightModifier::Mutable,
hir::Access::Owned => {
if let Some(receiver_ty) =
method_call.receiver().and_then(|it| sema.type_of_expr(&it))
{
if !receiver_ty.is_copy(sema.db) {
h |= HighlightModifier::Consuming
}
}
}
}
}
Some(h)
}
fn highlight_def(db: &RootDatabase, def: Definition) -> Highlight {
match def {
Definition::Macro(_) => HighlightTag::Symbol(SymbolKind::Macro),
Definition::Field(_) => HighlightTag::Symbol(SymbolKind::Field),
Definition::ModuleDef(def) => match def {
hir::ModuleDef::Module(_) => HighlightTag::Symbol(SymbolKind::Module),
hir::ModuleDef::Function(func) => {
let mut h = Highlight::new(HighlightTag::Symbol(SymbolKind::Function));
if func.as_assoc_item(db).is_some() {
h |= HighlightModifier::Associated;
if func.self_param(db).is_none() {
h |= HighlightModifier::Static
}
}
if func.is_unsafe(db) {
h |= HighlightModifier::Unsafe;
}
return h;
}
hir::ModuleDef::Adt(hir::Adt::Struct(_)) => HighlightTag::Symbol(SymbolKind::Struct),
hir::ModuleDef::Adt(hir::Adt::Enum(_)) => HighlightTag::Symbol(SymbolKind::Enum),
hir::ModuleDef::Adt(hir::Adt::Union(_)) => HighlightTag::Symbol(SymbolKind::Union),
hir::ModuleDef::EnumVariant(_) => HighlightTag::Symbol(SymbolKind::Variant),
hir::ModuleDef::Const(konst) => {
let mut h = Highlight::new(HighlightTag::Symbol(SymbolKind::Const));
if konst.as_assoc_item(db).is_some() {
h |= HighlightModifier::Associated
}
return h;
}
hir::ModuleDef::Trait(_) => HighlightTag::Symbol(SymbolKind::Trait),
hir::ModuleDef::TypeAlias(type_) => {
let mut h = Highlight::new(HighlightTag::Symbol(SymbolKind::TypeAlias));
if type_.as_assoc_item(db).is_some() {
h |= HighlightModifier::Associated
}
return h;
}
hir::ModuleDef::BuiltinType(_) => HighlightTag::BuiltinType,
hir::ModuleDef::Static(s) => {
let mut h = Highlight::new(HighlightTag::Symbol(SymbolKind::Static));
if s.is_mut(db) {
h |= HighlightModifier::Mutable;
h |= HighlightModifier::Unsafe;
}
return h;
}
},
Definition::SelfType(_) => HighlightTag::Symbol(SymbolKind::Impl),
Definition::TypeParam(_) => HighlightTag::Symbol(SymbolKind::TypeParam),
Definition::Local(local) => {
let tag = if local.is_param(db) {
HighlightTag::Symbol(SymbolKind::ValueParam)
} else {
HighlightTag::Symbol(SymbolKind::Local)
};
let mut h = Highlight::new(tag);
if local.is_mut(db) || local.ty(db).is_mutable_reference() {
h |= HighlightModifier::Mutable;
}
if local.ty(db).as_callable(db).is_some() || local.ty(db).impls_fnonce(db) {
h |= HighlightModifier::Callable;
}
return h;
}
Definition::LifetimeParam(_) => HighlightTag::Symbol(SymbolKind::LifetimeParam),
}
.into()
}
fn highlight_name_by_syntax(name: ast::Name) -> Highlight {
let default = HighlightTag::UnresolvedReference;
let parent = match name.syntax().parent() {
Some(it) => it,
_ => return default.into(),
};
let tag = match parent.kind() {
STRUCT => HighlightTag::Symbol(SymbolKind::Struct),
ENUM => HighlightTag::Symbol(SymbolKind::Enum),
VARIANT => HighlightTag::Symbol(SymbolKind::Variant),
UNION => HighlightTag::Symbol(SymbolKind::Union),
TRAIT => HighlightTag::Symbol(SymbolKind::Trait),
TYPE_ALIAS => HighlightTag::Symbol(SymbolKind::TypeAlias),
TYPE_PARAM => HighlightTag::Symbol(SymbolKind::TypeParam),
RECORD_FIELD => HighlightTag::Symbol(SymbolKind::Field),
MODULE => HighlightTag::Symbol(SymbolKind::Module),
FN => HighlightTag::Symbol(SymbolKind::Function),
CONST => HighlightTag::Symbol(SymbolKind::Const),
STATIC => HighlightTag::Symbol(SymbolKind::Static),
IDENT_PAT => HighlightTag::Symbol(SymbolKind::Local),
_ => default,
};
tag.into()
}
fn highlight_name_ref_by_syntax(name: ast::NameRef, sema: &Semantics) -> Highlight {
let default = HighlightTag::UnresolvedReference;
let parent = match name.syntax().parent() {
Some(it) => it,
_ => return default.into(),
};
match parent.kind() {
METHOD_CALL_EXPR => {
return ast::MethodCallExpr::cast(parent)
.and_then(|method_call| highlight_method_call(sema, &method_call))
.unwrap_or_else(|| HighlightTag::Symbol(SymbolKind::Function).into());
}
FIELD_EXPR => {
let h = HighlightTag::Symbol(SymbolKind::Field);
let is_union = ast::FieldExpr::cast(parent)
.and_then(|field_expr| {
let field = sema.resolve_field(&field_expr)?;
Some(if let VariantDef::Union(_) = field.parent_def(sema.db) {
true
} else {
false
})
})
.unwrap_or(false);
if is_union {
h | HighlightModifier::Unsafe
} else {
h.into()
}
}
PATH_SEGMENT => {
let path = match parent.parent().and_then(ast::Path::cast) {
Some(it) => it,
_ => return default.into(),
};
let expr = match path.syntax().parent().and_then(ast::PathExpr::cast) {
Some(it) => it,
_ => {
// within path, decide whether it is module or adt by checking for uppercase name
return if name.text().chars().next().unwrap_or_default().is_uppercase() {
HighlightTag::Symbol(SymbolKind::Struct)
} else {
HighlightTag::Symbol(SymbolKind::Module)
}
.into();
}
};
let parent = match expr.syntax().parent() {
Some(it) => it,
None => return default.into(),
};
match parent.kind() {
CALL_EXPR => HighlightTag::Symbol(SymbolKind::Function).into(),
_ => if name.text().chars().next().unwrap_or_default().is_uppercase() {
HighlightTag::Symbol(SymbolKind::Struct)
} else {
HighlightTag::Symbol(SymbolKind::Const)
}
.into(),
}
}
_ => default.into(),
}
}