//! `AstTransformer`s are functions that replace nodes in an AST and can be easily combined. use hir::{HirDisplay, PathResolution, SemanticsScope}; use ide_db::helpers::mod_path_to_ast; use rustc_hash::FxHashMap; use syntax::{ ast::{self, AstNode}, ted, SyntaxNode, }; pub fn apply<'a, N: AstNode>(transformer: &dyn AstTransform<'a>, node: &N) { let mut skip_to = None; for event in node.syntax().preorder() { match event { syntax::WalkEvent::Enter(node) if skip_to.is_none() => { skip_to = transformer.get_substitution(&node, transformer).zip(Some(node)); } syntax::WalkEvent::Enter(_) => (), syntax::WalkEvent::Leave(node) => match &skip_to { Some((replacement, skip_target)) if *skip_target == node => { ted::replace(node, replacement.clone_for_update()); skip_to.take(); } _ => (), }, } } } /// `AstTransform` helps with applying bulk transformations to syntax nodes. /// /// This is mostly useful for IDE code generation. If you paste some existing /// code into a new context (for example, to add method overrides to an `impl` /// block), you generally want to appropriately qualify the names, and sometimes /// you might want to substitute generic parameters as well: /// /// ``` /// mod x { /// pub struct A; /// pub trait T { fn foo(&self, _: U) -> A; } /// } /// /// mod y { /// use x::T; /// /// impl T<()> for () { /// // If we invoke **Add Missing Members** here, we want to copy-paste `foo`. /// // But we want a slightly-modified version of it: /// fn foo(&self, _: ()) -> x::A {} /// } /// } /// ``` /// /// So, a single `AstTransform` describes such function from `SyntaxNode` to /// `SyntaxNode`. Note that the API here is a bit too high-order and high-brow. /// We'd want to somehow express this concept simpler, but so far nobody got to /// simplifying this! pub trait AstTransform<'a> { fn get_substitution( &self, node: &SyntaxNode, recur: &dyn AstTransform<'a>, ) -> Option; fn or + 'a>(self, other: T) -> Box + 'a> where Self: Sized + 'a, { Box::new(Or(Box::new(self), Box::new(other))) } } struct Or<'a>(Box + 'a>, Box + 'a>); impl<'a> AstTransform<'a> for Or<'a> { fn get_substitution( &self, node: &SyntaxNode, recur: &dyn AstTransform<'a>, ) -> Option { self.0.get_substitution(node, recur).or_else(|| self.1.get_substitution(node, recur)) } } pub struct SubstituteTypeParams<'a> { source_scope: &'a SemanticsScope<'a>, substs: FxHashMap, } impl<'a> SubstituteTypeParams<'a> { pub fn for_trait_impl( source_scope: &'a SemanticsScope<'a>, // FIXME: there's implicit invariant that `trait_` and `source_scope` match... trait_: hir::Trait, impl_def: ast::Impl, ) -> SubstituteTypeParams<'a> { let substs = get_syntactic_substs(impl_def).unwrap_or_default(); let generic_def: hir::GenericDef = trait_.into(); let substs_by_param: FxHashMap<_, _> = generic_def .type_params(source_scope.db) .into_iter() // this is a trait impl, so we need to skip the first type parameter -- this is a bit hacky .skip(1) // The actual list of trait type parameters may be longer than the one // used in the `impl` block due to trailing default type parameters. // For that case we extend the `substs` with an empty iterator so we // can still hit those trailing values and check if they actually have // a default type. If they do, go for that type from `hir` to `ast` so // the resulting change can be applied correctly. .zip(substs.into_iter().map(Some).chain(std::iter::repeat(None))) .filter_map(|(k, v)| match v { Some(v) => Some((k, v)), None => { let default = k.default(source_scope.db)?; Some(( k, ast::make::ty( &default .display_source_code(source_scope.db, source_scope.module()?.into()) .ok()?, ), )) } }) .collect(); return SubstituteTypeParams { source_scope, substs: substs_by_param }; // FIXME: It would probably be nicer if we could get this via HIR (i.e. get the // trait ref, and then go from the types in the substs back to the syntax). fn get_syntactic_substs(impl_def: ast::Impl) -> Option> { let target_trait = impl_def.trait_()?; let path_type = match target_trait { ast::Type::PathType(path) => path, _ => return None, }; let generic_arg_list = path_type.path()?.segment()?.generic_arg_list()?; let mut result = Vec::new(); for generic_arg in generic_arg_list.generic_args() { match generic_arg { ast::GenericArg::TypeArg(type_arg) => result.push(type_arg.ty()?), ast::GenericArg::AssocTypeArg(_) | ast::GenericArg::LifetimeArg(_) | ast::GenericArg::ConstArg(_) => (), } } Some(result) } } } impl<'a> AstTransform<'a> for SubstituteTypeParams<'a> { fn get_substitution( &self, node: &SyntaxNode, _recur: &dyn AstTransform<'a>, ) -> Option { let type_ref = ast::Type::cast(node.clone())?; let path = match &type_ref { ast::Type::PathType(path_type) => path_type.path()?, _ => return None, }; let resolution = self.source_scope.speculative_resolve(&path)?; match resolution { hir::PathResolution::TypeParam(tp) => Some(self.substs.get(&tp)?.syntax().clone()), _ => None, } } } pub struct QualifyPaths<'a> { target_scope: &'a SemanticsScope<'a>, source_scope: &'a SemanticsScope<'a>, } impl<'a> QualifyPaths<'a> { pub fn new(target_scope: &'a SemanticsScope<'a>, source_scope: &'a SemanticsScope<'a>) -> Self { Self { target_scope, source_scope } } } impl<'a> AstTransform<'a> for QualifyPaths<'a> { fn get_substitution( &self, node: &SyntaxNode, recur: &dyn AstTransform<'a>, ) -> Option { // FIXME handle value ns? let from = self.target_scope.module()?; let p = ast::Path::cast(node.clone())?; if p.segment().and_then(|s| s.param_list()).is_some() { // don't try to qualify `Fn(Foo) -> Bar` paths, they are in prelude anyway return None; } let resolution = self.source_scope.speculative_resolve(&p)?; match resolution { PathResolution::Def(def) => { let found_path = from.find_use_path(self.source_scope.db.upcast(), def)?; let mut path = mod_path_to_ast(&found_path); let type_args = p.segment().and_then(|s| s.generic_arg_list()); if let Some(type_args) = type_args { apply(recur, &type_args); let last_segment = path.segment().unwrap(); path = path.with_segment(last_segment.with_generic_args(type_args)) } Some(path.syntax().clone()) } PathResolution::Local(_) | PathResolution::TypeParam(_) | PathResolution::SelfType(_) | PathResolution::ConstParam(_) => None, PathResolution::Macro(_) => None, PathResolution::AssocItem(_) => None, } } }