use std::collections::VecDeque; use syntax::ast::{self, AstNode}; use crate::{utils::invert_boolean_expression, AssistContext, AssistId, AssistKind, Assists}; // Assist: apply_demorgan // // Apply https://en.wikipedia.org/wiki/De_Morgan%27s_laws[De Morgan's law]. // This transforms expressions of the form `!l || !r` into `!(l && r)`. // This also works with `&&`. This assist can only be applied with the cursor // on either `||` or `&&`. // // ``` // fn main() { // if x != 4 ||$0 y < 3.14 {} // } // ``` // -> // ``` // fn main() { // if !(x == 4 && !(y < 3.14)) {} // } // ``` pub(crate) fn apply_demorgan(acc: &mut Assists, ctx: &AssistContext) -> Option<()> { let expr = ctx.find_node_at_offset::()?; let op = expr.op_kind()?; let op_range = expr.op_token()?.text_range(); let opposite_op = opposite_logic_op(op)?; let cursor_in_range = op_range.contains_range(ctx.frange.range); if !cursor_in_range { return None; } let mut expr = expr; // Walk up the tree while we have the same binary operator while let Some(parent_expr) = expr.syntax().parent().and_then(ast::BinExpr::cast) { if let Some(parent_op) = expr.op_kind() { if parent_op == op { expr = parent_expr } } } let mut expr_stack = vec![expr.clone()]; let mut terms = Vec::new(); let mut op_ranges = Vec::new(); // Find all the children with the same binary operator while let Some(expr) = expr_stack.pop() { let mut traverse_bin_expr_arm = |expr| { if let ast::Expr::BinExpr(bin_expr) = expr { if let Some(expr_op) = bin_expr.op_kind() { if expr_op == op { expr_stack.push(bin_expr); } else { terms.push(ast::Expr::BinExpr(bin_expr)); } } else { terms.push(ast::Expr::BinExpr(bin_expr)); } } else { terms.push(expr); } }; op_ranges.extend(expr.op_token().map(|t| t.text_range())); traverse_bin_expr_arm(expr.lhs()?); traverse_bin_expr_arm(expr.rhs()?); } acc.add( AssistId("apply_demorgan", AssistKind::RefactorRewrite), "Apply De Morgan's law", op_range, |edit| { terms.sort_by_key(|t| t.syntax().text_range().start()); let mut terms = VecDeque::from(terms); let paren_expr = expr.syntax().parent().and_then(ast::ParenExpr::cast); let neg_expr = paren_expr .clone() .and_then(|paren_expr| paren_expr.syntax().parent()) .and_then(ast::PrefixExpr::cast) .and_then(|prefix_expr| { if prefix_expr.op_kind().unwrap() == ast::PrefixOp::Not { Some(prefix_expr) } else { None } }); for op_range in op_ranges { edit.replace(op_range, opposite_op); } if let Some(paren_expr) = paren_expr { for term in terms { let range = term.syntax().text_range(); let not_term = invert_boolean_expression(&ctx.sema, term); edit.replace(range, not_term.syntax().text()); } if let Some(neg_expr) = neg_expr { cov_mark::hit!(demorgan_double_negation); edit.replace(neg_expr.op_token().unwrap().text_range(), ""); } else { cov_mark::hit!(demorgan_double_parens); edit.replace(paren_expr.l_paren_token().unwrap().text_range(), "!("); } } else { if let Some(lhs) = terms.pop_front() { let lhs_range = lhs.syntax().text_range(); let not_lhs = invert_boolean_expression(&ctx.sema, lhs); edit.replace(lhs_range, format!("!({}", not_lhs.syntax().text())); } if let Some(rhs) = terms.pop_back() { let rhs_range = rhs.syntax().text_range(); let not_rhs = invert_boolean_expression(&ctx.sema, rhs); edit.replace(rhs_range, format!("{})", not_rhs.syntax().text())); } for term in terms { let term_range = term.syntax().text_range(); let not_term = invert_boolean_expression(&ctx.sema, term); edit.replace(term_range, not_term.syntax().text()); } } }, ) } // Return the opposite text for a given logical operator, if it makes sense fn opposite_logic_op(kind: ast::BinOp) -> Option<&'static str> { match kind { ast::BinOp::BooleanOr => Some("&&"), ast::BinOp::BooleanAnd => Some("||"), _ => None, } } #[cfg(test)] mod tests { use crate::tests::{check_assist, check_assist_not_applicable}; use super::*; #[test] fn demorgan_handles_leq() { check_assist( apply_demorgan, r#" //- minicore: ord, derive #[derive(PartialEq, Eq, PartialOrd, Ord)] struct S; fn f() { S < S &&$0 S <= S } "#, r#" #[derive(PartialEq, Eq, PartialOrd, Ord)] struct S; fn f() { !(S >= S || S > S) } "#, ); check_assist( apply_demorgan, r#" //- minicore: ord, derive struct S; fn f() { S < S &&$0 S <= S } "#, r#" struct S; fn f() { !(!(S < S) || !(S <= S)) } "#, ); } #[test] fn demorgan_handles_geq() { check_assist( apply_demorgan, r#" //- minicore: ord, derive #[derive(PartialEq, Eq, PartialOrd, Ord)] struct S; fn f() { S > S &&$0 S >= S } "#, r#" #[derive(PartialEq, Eq, PartialOrd, Ord)] struct S; fn f() { !(S <= S || S < S) } "#, ); check_assist( apply_demorgan, r#" //- minicore: ord, derive struct S; fn f() { S > S &&$0 S >= S } "#, r#" struct S; fn f() { !(!(S > S) || !(S >= S)) } "#, ); } #[test] fn demorgan_turns_and_into_or() { check_assist(apply_demorgan, "fn f() { !x &&$0 !x }", "fn f() { !(x || x) }") } #[test] fn demorgan_turns_or_into_and() { check_assist(apply_demorgan, "fn f() { !x ||$0 !x }", "fn f() { !(x && x) }") } #[test] fn demorgan_removes_inequality() { check_assist(apply_demorgan, "fn f() { x != x ||$0 !x }", "fn f() { !(x == x && x) }") } #[test] fn demorgan_general_case() { check_assist(apply_demorgan, "fn f() { x ||$0 x }", "fn f() { !(!x && !x) }") } #[test] fn demorgan_multiple_terms() { check_assist(apply_demorgan, "fn f() { x ||$0 y || z }", "fn f() { !(!x && !y && !z) }"); check_assist(apply_demorgan, "fn f() { x || y ||$0 z }", "fn f() { !(!x && !y && !z) }"); } #[test] fn demorgan_doesnt_apply_with_cursor_not_on_op() { check_assist_not_applicable(apply_demorgan, "fn f() { $0 !x || !x }") } #[test] fn demorgan_doesnt_double_negation() { cov_mark::check!(demorgan_double_negation); check_assist(apply_demorgan, "fn f() { !(x ||$0 x) }", "fn f() { (!x && !x) }") } #[test] fn demorgan_doesnt_double_parens() { cov_mark::check!(demorgan_double_parens); check_assist(apply_demorgan, "fn f() { (x ||$0 x) }", "fn f() { !(!x && !x) }") } }