//! Completion of paths, i.e. `some::prefix::$0`. use hir::HasVisibility; use rustc_hash::FxHashSet; use syntax::AstNode; use crate::{CompletionContext, Completions}; pub(crate) fn complete_qualified_path(acc: &mut Completions, ctx: &CompletionContext) { if ctx.is_path_disallowed() { return; } let path = match ctx.path_qual() { Some(path) => path, None => return, }; let resolution = match ctx.sema.resolve_path(path) { Some(res) => res, None => return, }; let context_module = ctx.scope.module(); if ctx.expects_item() || ctx.expects_assoc_item() { if let hir::PathResolution::Def(hir::ModuleDef::Module(module)) = resolution { let module_scope = module.scope(ctx.db, context_module); for (name, def) in module_scope { if let hir::ScopeDef::MacroDef(macro_def) = def { if macro_def.is_fn_like() { acc.add_macro(ctx, Some(name.clone()), macro_def); } } if let hir::ScopeDef::ModuleDef(hir::ModuleDef::Module(_)) = def { acc.add_resolution(ctx, name, &def); } } } return; } // Add associated types on type parameters and `Self`. resolution.assoc_type_shorthand_candidates(ctx.db, |_, alias| { acc.add_type_alias(ctx, alias); None::<()> }); match resolution { hir::PathResolution::Def(hir::ModuleDef::Module(module)) => { let module_scope = module.scope(ctx.db, context_module); for (name, def) in module_scope { if ctx.in_use_tree() { if let hir::ScopeDef::Unknown = def { if let Some(name_ref) = ctx.name_ref_syntax.as_ref() { if name_ref.syntax().text() == name.to_string().as_str() { // for `use self::foo$0`, don't suggest `foo` as a completion cov_mark::hit!(dont_complete_current_use); continue; } } } } let add_resolution = match def { // Don't suggest attribute macros and derives. hir::ScopeDef::MacroDef(mac) => mac.is_fn_like(), // no values in type places hir::ScopeDef::ModuleDef( hir::ModuleDef::Function(_) | hir::ModuleDef::Variant(_) | hir::ModuleDef::Static(_), ) | hir::ScopeDef::Local(_) => !ctx.expects_type(), // unless its a constant in a generic arg list position hir::ScopeDef::ModuleDef(hir::ModuleDef::Const(_)) => { !ctx.expects_type() || ctx.expects_generic_arg() } _ => true, }; if add_resolution { acc.add_resolution(ctx, name, &def); } } } hir::PathResolution::Def( def @ (hir::ModuleDef::Adt(_) | hir::ModuleDef::TypeAlias(_) | hir::ModuleDef::BuiltinType(_)), ) => { if let hir::ModuleDef::Adt(hir::Adt::Enum(e)) = def { add_enum_variants(acc, ctx, e); } let ty = match def { hir::ModuleDef::Adt(adt) => adt.ty(ctx.db), hir::ModuleDef::TypeAlias(a) => { let ty = a.ty(ctx.db); if let Some(hir::Adt::Enum(e)) = ty.as_adt() { cov_mark::hit!(completes_variant_through_alias); add_enum_variants(acc, ctx, e); } ty } hir::ModuleDef::BuiltinType(builtin) => { let module = match ctx.scope.module() { Some(it) => it, None => return, }; cov_mark::hit!(completes_primitive_assoc_const); builtin.ty(ctx.db, module) } _ => unreachable!(), }; // XXX: For parity with Rust bug #22519, this does not complete Ty::AssocType. // (where AssocType is defined on a trait, not an inherent impl) let krate = ctx.krate; if let Some(krate) = krate { let traits_in_scope = ctx.scope.traits_in_scope(); ty.iterate_path_candidates(ctx.db, krate, &traits_in_scope, None, |_ty, item| { if context_module.map_or(false, |m| !item.is_visible_from(ctx.db, m)) { return None; } add_assoc_item(acc, ctx, item); None::<()> }); // Iterate assoc types separately ty.iterate_assoc_items(ctx.db, krate, |item| { if context_module.map_or(false, |m| !item.is_visible_from(ctx.db, m)) { return None; } if let hir::AssocItem::TypeAlias(ty) = item { acc.add_type_alias(ctx, ty) } None::<()> }); } } hir::PathResolution::Def(hir::ModuleDef::Trait(t)) => { // Handles `Trait::assoc` as well as `::assoc`. for item in t.items(ctx.db) { if context_module.map_or(false, |m| !item.is_visible_from(ctx.db, m)) { continue; } add_assoc_item(acc, ctx, item); } } hir::PathResolution::TypeParam(_) | hir::PathResolution::SelfType(_) => { if let Some(krate) = ctx.krate { let ty = match resolution { hir::PathResolution::TypeParam(param) => param.ty(ctx.db), hir::PathResolution::SelfType(impl_def) => impl_def.self_ty(ctx.db), _ => return, }; if let Some(hir::Adt::Enum(e)) = ty.as_adt() { add_enum_variants(acc, ctx, e); } let traits_in_scope = ctx.scope.traits_in_scope(); let mut seen = FxHashSet::default(); ty.iterate_path_candidates(ctx.db, krate, &traits_in_scope, None, |_ty, item| { if context_module.map_or(false, |m| !item.is_visible_from(ctx.db, m)) { return None; } // We might iterate candidates of a trait multiple times here, so deduplicate // them. if seen.insert(item) { add_assoc_item(acc, ctx, item); } None::<()> }); } } _ => {} } } fn add_assoc_item(acc: &mut Completions, ctx: &CompletionContext, item: hir::AssocItem) { match item { hir::AssocItem::Function(func) if !ctx.expects_type() => acc.add_function(ctx, func, None), hir::AssocItem::Const(ct) if !ctx.expects_type() || ctx.expects_generic_arg() => { acc.add_const(ctx, ct) } hir::AssocItem::TypeAlias(ty) => acc.add_type_alias(ctx, ty), _ => (), } } fn add_enum_variants(acc: &mut Completions, ctx: &CompletionContext, e: hir::Enum) { if ctx.expects_type() { return; } e.variants(ctx.db).into_iter().for_each(|variant| acc.add_enum_variant(ctx, variant, None)); } #[cfg(test)] mod tests { use expect_test::{expect, Expect}; use crate::{ tests::{check_edit, filtered_completion_list}, CompletionKind, }; fn check(ra_fixture: &str, expect: Expect) { let actual = filtered_completion_list(ra_fixture, CompletionKind::Reference); expect.assert_eq(&actual); } fn check_builtin(ra_fixture: &str, expect: Expect) { let actual = filtered_completion_list(ra_fixture, CompletionKind::BuiltinType); expect.assert_eq(&actual); } #[test] fn dont_complete_primitive_in_use() { check_builtin(r#"use self::$0;"#, expect![[""]]); } #[test] fn dont_complete_primitive_in_module_scope() { check_builtin(r#"fn foo() { self::$0 }"#, expect![[""]]); } #[test] fn completes_enum_variant() { check( r#" enum E { Foo, Bar(i32) } fn foo() { let _ = E::$0 } "#, expect![[r#" ev Foo () ev Bar(…) (i32) "#]], ); } #[test] fn completes_struct_associated_items() { check( r#" //- /lib.rs struct S; impl S { fn a() {} fn b(&self) {} const C: i32 = 42; type T = i32; } fn foo() { let _ = S::$0 } "#, expect![[r#" fn a() fn() me b(…) fn(&self) ct C const C: i32 = 42; ta T type T = i32; "#]], ); } #[test] fn associated_item_visibility() { check( r#" struct S; mod m { impl super::S { pub(crate) fn public_method() { } fn private_method() { } pub(crate) type PublicType = u32; type PrivateType = u32; pub(crate) const PUBLIC_CONST: u32 = 1; const PRIVATE_CONST: u32 = 1; } } fn foo() { let _ = S::$0 } "#, expect![[r#" fn public_method() fn() ct PUBLIC_CONST pub(crate) const PUBLIC_CONST: u32 = 1; ta PublicType pub(crate) type PublicType = u32; "#]], ); } #[test] fn completes_enum_associated_method() { check( r#" enum E {}; impl E { fn m() { } } fn foo() { let _ = E::$0 } "#, expect![[r#" fn m() fn() "#]], ); } #[test] fn completes_union_associated_method() { check( r#" union U {}; impl U { fn m() { } } fn foo() { let _ = U::$0 } "#, expect![[r#" fn m() fn() "#]], ); } #[test] fn completes_trait_associated_method_1() { check( r#" trait Trait { fn m(); } fn foo() { let _ = Trait::$0 } "#, expect![[r#" fn m() fn() "#]], ); } #[test] fn completes_trait_associated_method_2() { check( r#" trait Trait { fn m(); } struct S; impl Trait for S {} fn foo() { let _ = S::$0 } "#, expect![[r#" fn m() fn() "#]], ); } #[test] fn completes_trait_associated_method_3() { check( r#" trait Trait { fn m(); } struct S; impl Trait for S {} fn foo() { let _ = ::$0 } "#, expect![[r#" fn m() fn() "#]], ); } #[test] fn completes_ty_param_assoc_ty() { check( r#" trait Super { type Ty; const CONST: u8; fn func() {} fn method(&self) {} } trait Sub: Super { type SubTy; const C2: (); fn subfunc() {} fn submethod(&self) {} } fn foo() { T::$0 } "#, expect![[r#" ta SubTy type SubTy; ta Ty type Ty; ct C2 const C2: (); fn subfunc() fn() me submethod(…) fn(&self) ct CONST const CONST: u8; fn func() fn() me method(…) fn(&self) "#]], ); } #[test] fn completes_self_param_assoc_ty() { check( r#" trait Super { type Ty; const CONST: u8 = 0; fn func() {} fn method(&self) {} } trait Sub: Super { type SubTy; const C2: () = (); fn subfunc() {} fn submethod(&self) {} } struct Wrap(T); impl Super for Wrap {} impl Sub for Wrap { fn subfunc() { // Should be able to assume `Self: Sub + Super` Self::$0 } } "#, expect![[r#" ta SubTy type SubTy; ta Ty type Ty; ct CONST const CONST: u8 = 0; fn func() fn() me method(…) fn(&self) ct C2 const C2: () = (); fn subfunc() fn() me submethod(…) fn(&self) "#]], ); } #[test] fn completes_type_alias() { check( r#" struct S; impl S { fn foo() {} } type T = S; impl T { fn bar() {} } fn main() { T::$0; } "#, expect![[r#" fn foo() fn() fn bar() fn() "#]], ); } #[test] fn completes_qualified_macros() { check( r#" #[macro_export] macro_rules! foo { () => {} } fn main() { let _ = crate::$0 } "#, expect![[r##" fn main() fn() ma foo!(…) #[macro_export] macro_rules! foo "##]], ); } #[test] fn does_not_complete_non_fn_macros() { check( r#" mod m { #[rustc_builtin_macro] pub macro Clone {} } fn f() {m::$0} "#, expect![[r#""#]], ); check( r#" mod m { #[rustc_builtin_macro] pub macro bench {} } fn f() {m::$0} "#, expect![[r#""#]], ); } #[test] fn completes_reexported_items_under_correct_name() { check( r#" fn foo() { self::m::$0 } mod m { pub use super::p::wrong_fn as right_fn; pub use super::p::WRONG_CONST as RIGHT_CONST; pub use super::p::WrongType as RightType; } mod p { fn wrong_fn() {} const WRONG_CONST: u32 = 1; struct WrongType {}; } "#, expect![[r#" ct RIGHT_CONST fn right_fn() fn() st RightType "#]], ); check_edit( "RightType", r#" fn foo() { self::m::$0 } mod m { pub use super::p::wrong_fn as right_fn; pub use super::p::WRONG_CONST as RIGHT_CONST; pub use super::p::WrongType as RightType; } mod p { fn wrong_fn() {} const WRONG_CONST: u32 = 1; struct WrongType {}; } "#, r#" fn foo() { self::m::RightType } mod m { pub use super::p::wrong_fn as right_fn; pub use super::p::WRONG_CONST as RIGHT_CONST; pub use super::p::WrongType as RightType; } mod p { fn wrong_fn() {} const WRONG_CONST: u32 = 1; struct WrongType {}; } "#, ); } #[test] fn completes_in_simple_macro_call() { check( r#" macro_rules! m { ($e:expr) => { $e } } fn main() { m!(self::f$0); } fn foo() {} "#, expect![[r#" fn main() fn() fn foo() fn() "#]], ); } #[test] fn function_mod_share_name() { check( r#" fn foo() { self::m::$0 } mod m { pub mod z {} pub fn z() {} } "#, expect![[r#" md z fn z() fn() "#]], ); } #[test] fn completes_hashmap_new() { check( r#" struct RandomState; struct HashMap {} impl HashMap { pub fn new() -> HashMap { } } fn foo() { HashMap::$0 } "#, expect![[r#" fn new() fn() -> HashMap "#]], ); } #[test] fn dont_complete_attr() { check( r#" mod foo { pub struct Foo; } #[foo::$0] fn f() {} "#, expect![[""]], ); } #[test] fn completes_variant_through_self() { check( r#" enum Foo { Bar, Baz, } impl Foo { fn foo(self) { Self::$0 } } "#, expect![[r#" ev Bar () ev Baz () me foo(…) fn(self) "#]], ); } #[test] fn completes_primitive_assoc_const() { cov_mark::check!(completes_primitive_assoc_const); check( r#" //- /lib.rs crate:lib deps:core fn f() { u8::$0 } //- /core.rs crate:core #[lang = "u8"] impl u8 { pub const MAX: Self = 255; pub fn func(self) {} } "#, expect![[r#" ct MAX pub const MAX: Self = 255; me func(…) fn(self) "#]], ); } #[test] fn completes_variant_through_alias() { cov_mark::check!(completes_variant_through_alias); check( r#" enum Foo { Bar } type Foo2 = Foo; fn main() { Foo2::$0 } "#, expect![[r#" ev Bar () "#]], ); } }