//! See `CompletionContext` structure. use hir::{Local, ScopeDef, Semantics, SemanticsScope, Type}; use ide_db::{ base_db::{FilePosition, SourceDatabase}, call_info::ActiveParameter, RootDatabase, }; use syntax::{ algo::find_node_at_offset, ast::{self, NameOrNameRef, NameOwner}, match_ast, AstNode, NodeOrToken, SyntaxKind::{self, *}, SyntaxNode, SyntaxToken, TextRange, TextSize, T, }; use text_edit::Indel; use crate::{ patterns::{ determine_location, determine_prev_sibling, for_is_prev2, inside_impl_trait_block, is_in_loop_body, previous_token, ImmediateLocation, ImmediatePrevSibling, }, CompletionConfig, }; #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) enum PatternRefutability { Refutable, Irrefutable, } #[derive(Debug)] pub(super) enum PathKind { Expr, Type, } #[derive(Debug)] pub(crate) struct PathCompletionContext { /// If this is a call with () already there call_kind: Option, /// A single-indent path, like `foo`. `::foo` should not be considered a trivial path. pub(super) is_trivial_path: bool, /// If not a trivial path, the prefix (qualifier). pub(super) qualifier: Option, pub(super) kind: Option, /// Whether the path segment has type args or not. pub(super) has_type_args: bool, /// `true` if we are a statement or a last expr in the block. pub(super) can_be_stmt: bool, pub(super) in_loop_body: bool, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) enum CallKind { Pat, Mac, Expr, } /// `CompletionContext` is created early during completion to figure out, where /// exactly is the cursor, syntax-wise. #[derive(Debug)] pub(crate) struct CompletionContext<'a> { pub(super) sema: Semantics<'a, RootDatabase>, pub(super) scope: SemanticsScope<'a>, pub(super) db: &'a RootDatabase, pub(super) config: &'a CompletionConfig, pub(super) position: FilePosition, /// The token before the cursor, in the original file. pub(super) original_token: SyntaxToken, /// The token before the cursor, in the macro-expanded file. pub(super) token: SyntaxToken, pub(super) krate: Option, pub(super) expected_name: Option, pub(super) expected_type: Option, /// The parent function of the cursor position if it exists. pub(super) function_def: Option, /// The parent impl of the cursor position if it exists. pub(super) impl_def: Option, pub(super) name_ref_syntax: Option, pub(super) use_item_syntax: Option, // potentially set if we are completing a lifetime pub(super) lifetime_syntax: Option, pub(super) lifetime_param_syntax: Option, pub(super) lifetime_allowed: bool, pub(super) is_label_ref: bool, // potentially set if we are completing a name pub(super) is_pat_or_const: Option, pub(super) is_param: bool, pub(super) completion_location: Option, pub(super) prev_sibling: Option, pub(super) attribute_under_caret: Option, pub(super) previous_token: Option, pub(super) path_context: Option, pub(super) active_parameter: Option, pub(super) locals: Vec<(String, Local)>, pub(super) incomplete_let: bool, no_completion_required: bool, } impl<'a> CompletionContext<'a> { pub(super) fn new( db: &'a RootDatabase, position: FilePosition, config: &'a CompletionConfig, ) -> Option> { let sema = Semantics::new(db); let original_file = sema.parse(position.file_id); // Insert a fake ident to get a valid parse tree. We will use this file // to determine context, though the original_file will be used for // actual completion. let file_with_fake_ident = { let parse = db.parse(position.file_id); let edit = Indel::insert(position.offset, "intellijRulezz".to_string()); parse.reparse(&edit).tree() }; let fake_ident_token = file_with_fake_ident.syntax().token_at_offset(position.offset).right_biased().unwrap(); let krate = sema.to_module_def(position.file_id).map(|m| m.krate()); let original_token = original_file.syntax().token_at_offset(position.offset).left_biased()?; let token = sema.descend_into_macros(original_token.clone()); let scope = sema.scope_at_offset(&token, position.offset); let mut locals = vec![]; scope.process_all_names(&mut |name, scope| { if let ScopeDef::Local(local) = scope { locals.push((name.to_string(), local)); } }); let mut ctx = CompletionContext { sema, scope, db, config, position, original_token, token, krate, expected_name: None, expected_type: None, function_def: None, impl_def: None, name_ref_syntax: None, use_item_syntax: None, lifetime_syntax: None, lifetime_param_syntax: None, lifetime_allowed: false, is_label_ref: false, is_pat_or_const: None, is_param: false, completion_location: None, prev_sibling: None, attribute_under_caret: None, previous_token: None, path_context: None, active_parameter: ActiveParameter::at(db, position), locals, incomplete_let: false, no_completion_required: false, }; let mut original_file = original_file.syntax().clone(); let mut speculative_file = file_with_fake_ident.syntax().clone(); let mut offset = position.offset; let mut fake_ident_token = fake_ident_token; // Are we inside a macro call? while let (Some(actual_macro_call), Some(macro_call_with_fake_ident)) = ( find_node_at_offset::(&original_file, offset), find_node_at_offset::(&speculative_file, offset), ) { if actual_macro_call.path().as_ref().map(|s| s.syntax().text()) != macro_call_with_fake_ident.path().as_ref().map(|s| s.syntax().text()) { break; } let speculative_args = match macro_call_with_fake_ident.token_tree() { Some(tt) => tt, None => break, }; if let (Some(actual_expansion), Some(speculative_expansion)) = ( ctx.sema.expand(&actual_macro_call), ctx.sema.speculative_expand( &actual_macro_call, &speculative_args, fake_ident_token, ), ) { let new_offset = speculative_expansion.1.text_range().start(); if new_offset > actual_expansion.text_range().end() { break; } original_file = actual_expansion; speculative_file = speculative_expansion.0; fake_ident_token = speculative_expansion.1; offset = new_offset; } else { break; } } ctx.fill(&original_file, speculative_file, offset); Some(ctx) } /// Checks whether completions in that particular case don't make much sense. /// Examples: /// - `fn $0` -- we expect function name, it's unlikely that "hint" will be helpful. /// Exception for this case is `impl Trait for Foo`, where we would like to hint trait method names. /// - `for _ i$0` -- obviously, it'll be "in" keyword. pub(crate) fn no_completion_required(&self) -> bool { self.no_completion_required } /// The range of the identifier that is being completed. pub(crate) fn source_range(&self) -> TextRange { // check kind of macro-expanded token, but use range of original token let kind = self.token.kind(); if kind == IDENT || kind == LIFETIME_IDENT || kind == UNDERSCORE || kind.is_keyword() { cov_mark::hit!(completes_if_prefix_is_keyword); self.original_token.text_range() } else if kind == CHAR { // assume we are completing a lifetime but the user has only typed the ' cov_mark::hit!(completes_if_lifetime_without_idents); TextRange::at(self.original_token.text_range().start(), TextSize::from(1)) } else { TextRange::empty(self.position.offset) } } pub(crate) fn previous_token_is(&self, kind: SyntaxKind) -> bool { self.previous_token.as_ref().map_or(false, |tok| tok.kind() == kind) } pub(crate) fn expects_assoc_item(&self) -> bool { matches!( self.completion_location, Some(ImmediateLocation::Trait) | Some(ImmediateLocation::Impl) ) } pub(crate) fn has_dot_receiver(&self) -> bool { matches!( &self.completion_location, Some(ImmediateLocation::FieldAccess { receiver, .. }) | Some(ImmediateLocation::MethodCall { receiver,.. }) if receiver.is_some() ) } pub(crate) fn dot_receiver(&self) -> Option<&ast::Expr> { match &self.completion_location { Some(ImmediateLocation::MethodCall { receiver, .. }) | Some(ImmediateLocation::FieldAccess { receiver, .. }) => receiver.as_ref(), _ => None, } } pub(crate) fn expects_use_tree(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::Use)) } pub(crate) fn expects_non_trait_assoc_item(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::Impl)) } pub(crate) fn expects_item(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::ItemList)) } pub(crate) fn has_block_expr_parent(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::BlockExpr)) } pub(crate) fn expects_ident_pat_or_ref_expr(&self) -> bool { matches!( self.completion_location, Some(ImmediateLocation::IdentPat) | Some(ImmediateLocation::RefExpr) ) } pub(crate) fn expect_record_field(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::RecordField)) } pub(crate) fn has_impl_or_trait_prev_sibling(&self) -> bool { matches!( self.prev_sibling, Some(ImmediatePrevSibling::ImplDefType) | Some(ImmediatePrevSibling::TraitDefName) ) } pub(crate) fn after_if(&self) -> bool { matches!(self.prev_sibling, Some(ImmediatePrevSibling::IfExpr)) } pub(crate) fn is_path_disallowed(&self) -> bool { matches!( self.completion_location, Some(ImmediateLocation::Attribute(_)) | Some(ImmediateLocation::ModDeclaration(_)) | Some(ImmediateLocation::RecordPat(_)) | Some(ImmediateLocation::RecordExpr(_)) ) || self.attribute_under_caret.is_some() } pub(crate) fn expects_expression(&self) -> bool { matches!(self.path_context, Some(PathCompletionContext { kind: Some(PathKind::Expr), .. })) } pub(crate) fn expects_type(&self) -> bool { matches!(self.path_context, Some(PathCompletionContext { kind: Some(PathKind::Type), .. })) } pub(crate) fn path_call_kind(&self) -> Option { self.path_context.as_ref().and_then(|it| it.call_kind) } pub(crate) fn is_trivial_path(&self) -> bool { matches!(self.path_context, Some(PathCompletionContext { is_trivial_path: true, .. })) } pub(crate) fn path_qual(&self) -> Option<&ast::Path> { self.path_context.as_ref().and_then(|it| it.qualifier.as_ref()) } fn fill_impl_def(&mut self) { self.impl_def = self .sema .token_ancestors_with_macros(self.token.clone()) .take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE) .find_map(ast::Impl::cast); } fn expected_type_and_name(&self) -> (Option, Option) { let mut node = match self.token.parent() { Some(it) => it, None => return (None, None), }; loop { break match_ast! { match node { ast::LetStmt(it) => { cov_mark::hit!(expected_type_let_with_leading_char); cov_mark::hit!(expected_type_let_without_leading_char); let ty = it.pat() .and_then(|pat| self.sema.type_of_pat(&pat)) .or_else(|| it.initializer().and_then(|it| self.sema.type_of_expr(&it))); let name = if let Some(ast::Pat::IdentPat(ident)) = it.pat() { ident.name().map(NameOrNameRef::Name) } else { None }; (ty, name) }, ast::ArgList(_it) => { cov_mark::hit!(expected_type_fn_param_with_leading_char); cov_mark::hit!(expected_type_fn_param_without_leading_char); ActiveParameter::at_token( &self.sema, self.token.clone(), ).map(|ap| { let name = ap.ident().map(NameOrNameRef::Name); (Some(ap.ty), name) }) .unwrap_or((None, None)) }, ast::RecordExprFieldList(_it) => { cov_mark::hit!(expected_type_struct_field_without_leading_char); // wouldn't try {} be nice... (|| { let expr_field = self.token.prev_sibling_or_token()? .into_node() .and_then(ast::RecordExprField::cast)?; let (_, _, ty) = self.sema.resolve_record_field(&expr_field)?; Some(( Some(ty), expr_field.field_name().map(NameOrNameRef::NameRef), )) })().unwrap_or((None, None)) }, ast::RecordExprField(it) => { cov_mark::hit!(expected_type_struct_field_with_leading_char); ( it.expr().as_ref().and_then(|e| self.sema.type_of_expr(e)), it.field_name().map(NameOrNameRef::NameRef), ) }, ast::MatchExpr(it) => { cov_mark::hit!(expected_type_match_arm_without_leading_char); let ty = it.expr() .and_then(|e| self.sema.type_of_expr(&e)); (ty, None) }, ast::IfExpr(it) => { cov_mark::hit!(expected_type_if_let_without_leading_char); let ty = it.condition() .and_then(|cond| cond.expr()) .and_then(|e| self.sema.type_of_expr(&e)); (ty, None) }, ast::IdentPat(it) => { cov_mark::hit!(expected_type_if_let_with_leading_char); cov_mark::hit!(expected_type_match_arm_with_leading_char); let ty = self.sema.type_of_pat(&ast::Pat::from(it)); (ty, None) }, ast::Fn(it) => { cov_mark::hit!(expected_type_fn_ret_with_leading_char); cov_mark::hit!(expected_type_fn_ret_without_leading_char); let def = self.sema.to_def(&it); (def.map(|def| def.ret_type(self.db)), None) }, ast::ClosureExpr(it) => { let ty = self.sema.type_of_expr(&it.into()); ty.and_then(|ty| ty.as_callable(self.db)) .map(|c| (Some(c.return_type()), None)) .unwrap_or((None, None)) }, ast::Stmt(_it) => (None, None), _ => { match node.parent() { Some(n) => { node = n; continue; }, None => (None, None), } }, } }; } } fn fill( &mut self, original_file: &SyntaxNode, file_with_fake_ident: SyntaxNode, offset: TextSize, ) { let fake_ident_token = file_with_fake_ident.token_at_offset(offset).right_biased().unwrap(); let syntax_element = NodeOrToken::Token(fake_ident_token); self.previous_token = previous_token(syntax_element.clone()); self.attribute_under_caret = syntax_element.ancestors().find_map(ast::Attr::cast); self.no_completion_required = { let inside_impl_trait_block = inside_impl_trait_block(syntax_element.clone()); let fn_is_prev = self.previous_token_is(T![fn]); let for_is_prev2 = for_is_prev2(syntax_element.clone()); (fn_is_prev && !inside_impl_trait_block) || for_is_prev2 }; self.incomplete_let = syntax_element.ancestors().take(6).find_map(ast::LetStmt::cast).map_or(false, |it| { it.syntax().text_range().end() == syntax_element.text_range().end() }); let (expected_type, expected_name) = self.expected_type_and_name(); self.expected_type = expected_type; self.expected_name = expected_name; let name_like = match find_node_at_offset(&file_with_fake_ident, offset) { Some(it) => it, None => return, }; self.completion_location = determine_location(&self.sema, original_file, offset, &name_like); self.prev_sibling = determine_prev_sibling(&name_like); match name_like { ast::NameLike::Lifetime(lifetime) => { self.classify_lifetime(original_file, lifetime, offset); } ast::NameLike::NameRef(name_ref) => { self.classify_name_ref(original_file, name_ref); } ast::NameLike::Name(name) => { self.classify_name(name); } } } fn classify_lifetime( &mut self, original_file: &SyntaxNode, lifetime: ast::Lifetime, offset: TextSize, ) { self.lifetime_syntax = find_node_at_offset(original_file, lifetime.syntax().text_range().start()); if let Some(parent) = lifetime.syntax().parent() { if parent.kind() == ERROR { return; } match_ast! { match parent { ast::LifetimeParam(_it) => { self.lifetime_allowed = true; self.lifetime_param_syntax = self.sema.find_node_at_offset_with_macros(original_file, offset); }, ast::BreakExpr(_it) => self.is_label_ref = true, ast::ContinueExpr(_it) => self.is_label_ref = true, ast::Label(_it) => (), _ => self.lifetime_allowed = true, } } } } fn classify_name(&mut self, name: ast::Name) { if let Some(bind_pat) = name.syntax().parent().and_then(ast::IdentPat::cast) { self.is_pat_or_const = Some(PatternRefutability::Refutable); // if any of these is here our bind pat can't be a const pat anymore let complex_ident_pat = bind_pat.at_token().is_some() || bind_pat.ref_token().is_some() || bind_pat.mut_token().is_some(); if complex_ident_pat { self.is_pat_or_const = None; } else { let irrefutable_pat = bind_pat.syntax().ancestors().find_map(|node| { match_ast! { match node { ast::LetStmt(it) => Some(it.pat()), ast::Param(it) => Some(it.pat()), _ => None, } } }); if let Some(Some(pat)) = irrefutable_pat { // This check is here since we could be inside a pattern in the initializer expression of the let statement. if pat.syntax().text_range().contains_range(bind_pat.syntax().text_range()) { self.is_pat_or_const = Some(PatternRefutability::Irrefutable); } } let is_name_in_field_pat = bind_pat .syntax() .parent() .and_then(ast::RecordPatField::cast) .map_or(false, |pat_field| pat_field.name_ref().is_none()); if is_name_in_field_pat { self.is_pat_or_const = None; } } self.fill_impl_def(); } self.is_param |= is_node::(name.syntax()); } fn classify_name_ref(&mut self, original_file: &SyntaxNode, name_ref: ast::NameRef) { self.fill_impl_def(); self.name_ref_syntax = find_node_at_offset(original_file, name_ref.syntax().text_range().start()); self.use_item_syntax = self.sema.token_ancestors_with_macros(self.token.clone()).find_map(ast::Use::cast); self.function_def = self .sema .token_ancestors_with_macros(self.token.clone()) .take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE) .find_map(ast::Fn::cast); let parent = match name_ref.syntax().parent() { Some(it) => it, None => return, }; if let Some(segment) = ast::PathSegment::cast(parent) { let path_ctx = self.path_context.get_or_insert(PathCompletionContext { call_kind: None, is_trivial_path: false, qualifier: None, has_type_args: false, can_be_stmt: false, in_loop_body: false, kind: None, }); path_ctx.in_loop_body = is_in_loop_body(name_ref.syntax()); let path = segment.parent_path(); if let Some(p) = path.syntax().parent() { path_ctx.call_kind = match_ast! { match p { ast::PathExpr(it) => it.syntax().parent().and_then(ast::CallExpr::cast).map(|_| CallKind::Expr), ast::MacroCall(it) => it.excl_token().and(Some(CallKind::Mac)), ast::TupleStructPat(_it) => Some(CallKind::Pat), _ => None } }; } if let Some(parent) = path.syntax().parent() { path_ctx.kind = match_ast! { match parent { ast::PathType(_it) => Some(PathKind::Type), ast::PathExpr(_it) => Some(PathKind::Expr), _ => None, } }; } path_ctx.has_type_args = segment.generic_arg_list().is_some(); if let Some(path) = path_or_use_tree_qualifier(&path) { path_ctx.qualifier = path .segment() .and_then(|it| { find_node_with_range::( original_file, it.syntax().text_range(), ) }) .map(|it| it.parent_path()); return; } if let Some(segment) = path.segment() { if segment.coloncolon_token().is_some() { return; } } path_ctx.is_trivial_path = true; // Find either enclosing expr statement (thing with `;`) or a // block. If block, check that we are the last expr. path_ctx.can_be_stmt = name_ref .syntax() .ancestors() .find_map(|node| { if let Some(stmt) = ast::ExprStmt::cast(node.clone()) { return Some(stmt.syntax().text_range() == name_ref.syntax().text_range()); } if let Some(block) = ast::BlockExpr::cast(node) { return Some( block.tail_expr().map(|e| e.syntax().text_range()) == Some(name_ref.syntax().text_range()), ); } None }) .unwrap_or(false); } } } fn find_node_with_range(syntax: &SyntaxNode, range: TextRange) -> Option { syntax.covering_element(range).ancestors().find_map(N::cast) } fn is_node(node: &SyntaxNode) -> bool { match node.ancestors().find_map(N::cast) { None => false, Some(n) => n.syntax().text_range() == node.text_range(), } } fn path_or_use_tree_qualifier(path: &ast::Path) -> Option { if let Some(qual) = path.qualifier() { return Some(qual); } let use_tree_list = path.syntax().ancestors().find_map(ast::UseTreeList::cast)?; let use_tree = use_tree_list.syntax().parent().and_then(ast::UseTree::cast)?; use_tree.path() } #[cfg(test)] mod tests { use expect_test::{expect, Expect}; use hir::HirDisplay; use crate::test_utils::{position, TEST_CONFIG}; use super::CompletionContext; fn check_expected_type_and_name(ra_fixture: &str, expect: Expect) { let (db, pos) = position(ra_fixture); let completion_context = CompletionContext::new(&db, pos, &TEST_CONFIG).unwrap(); let ty = completion_context .expected_type .map(|t| t.display_test(&db).to_string()) .unwrap_or("?".to_owned()); let name = completion_context .expected_name .map_or_else(|| "?".to_owned(), |name| name.to_string()); expect.assert_eq(&format!("ty: {}, name: {}", ty, name)); } #[test] fn expected_type_let_without_leading_char() { cov_mark::check!(expected_type_let_without_leading_char); check_expected_type_and_name( r#" fn foo() { let x: u32 = $0; } "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_let_with_leading_char() { cov_mark::check!(expected_type_let_with_leading_char); check_expected_type_and_name( r#" fn foo() { let x: u32 = c$0; } "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_let_pat() { check_expected_type_and_name( r#" fn foo() { let x$0 = 0u32; } "#, expect![[r#"ty: u32, name: ?"#]], ); check_expected_type_and_name( r#" fn foo() { let $0 = 0u32; } "#, expect![[r#"ty: u32, name: ?"#]], ); } #[test] fn expected_type_fn_param_without_leading_char() { cov_mark::check!(expected_type_fn_param_without_leading_char); check_expected_type_and_name( r#" fn foo() { bar($0); } fn bar(x: u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_fn_param_with_leading_char() { cov_mark::check!(expected_type_fn_param_with_leading_char); check_expected_type_and_name( r#" fn foo() { bar(c$0); } fn bar(x: u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_struct_field_without_leading_char() { cov_mark::check!(expected_type_struct_field_without_leading_char); check_expected_type_and_name( r#" struct Foo { a: u32 } fn foo() { Foo { a: $0 }; } "#, expect![[r#"ty: u32, name: a"#]], ) } #[test] fn expected_type_generic_struct_field() { check_expected_type_and_name( r#" struct Foo { a: T } fn foo() -> Foo { Foo { a: $0 } } "#, expect![[r#"ty: u32, name: a"#]], ) } #[test] fn expected_type_struct_field_with_leading_char() { cov_mark::check!(expected_type_struct_field_with_leading_char); check_expected_type_and_name( r#" struct Foo { a: u32 } fn foo() { Foo { a: c$0 }; } "#, expect![[r#"ty: u32, name: a"#]], ); } #[test] fn expected_type_match_arm_without_leading_char() { cov_mark::check!(expected_type_match_arm_without_leading_char); check_expected_type_and_name( r#" enum E { X } fn foo() { match E::X { $0 } } "#, expect![[r#"ty: E, name: ?"#]], ); } #[test] fn expected_type_match_arm_with_leading_char() { cov_mark::check!(expected_type_match_arm_with_leading_char); check_expected_type_and_name( r#" enum E { X } fn foo() { match E::X { c$0 } } "#, expect![[r#"ty: E, name: ?"#]], ); } #[test] fn expected_type_if_let_without_leading_char() { cov_mark::check!(expected_type_if_let_without_leading_char); check_expected_type_and_name( r#" enum Foo { Bar, Baz, Quux } fn foo() { let f = Foo::Quux; if let $0 = f { } } "#, expect![[r#"ty: Foo, name: ?"#]], ) } #[test] fn expected_type_if_let_with_leading_char() { cov_mark::check!(expected_type_if_let_with_leading_char); check_expected_type_and_name( r#" enum Foo { Bar, Baz, Quux } fn foo() { let f = Foo::Quux; if let c$0 = f { } } "#, expect![[r#"ty: Foo, name: ?"#]], ) } #[test] fn expected_type_fn_ret_without_leading_char() { cov_mark::check!(expected_type_fn_ret_without_leading_char); check_expected_type_and_name( r#" fn foo() -> u32 { $0 } "#, expect![[r#"ty: u32, name: ?"#]], ) } #[test] fn expected_type_fn_ret_with_leading_char() { cov_mark::check!(expected_type_fn_ret_with_leading_char); check_expected_type_and_name( r#" fn foo() -> u32 { c$0 } "#, expect![[r#"ty: u32, name: ?"#]], ) } #[test] fn expected_type_fn_ret_fn_ref_fully_typed() { check_expected_type_and_name( r#" fn foo() -> u32 { foo$0 } "#, expect![[r#"ty: u32, name: ?"#]], ) } #[test] fn expected_type_closure_param_return() { // FIXME: make this work with `|| $0` check_expected_type_and_name( r#" fn foo() { bar(|| a$0); } fn bar(f: impl FnOnce() -> u32) {} #[lang = "fn_once"] trait FnOnce { type Output; } "#, expect![[r#"ty: u32, name: ?"#]], ); } #[test] fn expected_type_generic_function() { check_expected_type_and_name( r#" fn foo() { bar::($0); } fn bar(t: T) {} "#, expect![[r#"ty: u32, name: t"#]], ); } #[test] fn expected_type_generic_method() { check_expected_type_and_name( r#" fn foo() { S(1u32).bar($0); } struct S(T); impl S { fn bar(self, t: T) {} } "#, expect![[r#"ty: u32, name: t"#]], ); } }