//! Patterns telling us certain facts about current syntax element, they are used in completion context use syntax::{ algo::non_trivia_sibling, ast::{self, LoopBodyOwner}, match_ast, AstNode, Direction, NodeOrToken, SyntaxElement, SyntaxKind::*, SyntaxNode, SyntaxToken, T, }; #[cfg(test)] use crate::test_utils::{check_pattern_is_applicable, check_pattern_is_not_applicable}; /// Direct parent container of the cursor position #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) enum ImmediatePrevSibling { IfExpr, TraitDefName, ImplDefType, } /// Direct parent container of the cursor position #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) enum ImmediateLocation { Use, Impl, Trait, RecordField, RefExpr, IdentPat, BlockExpr, ItemList, } pub(crate) fn determine_prev_sibling(name_like: &ast::NameLike) -> Option { let node = maximize_name_ref(name_like)?; let node = match node.parent().and_then(ast::MacroCall::cast) { // When a path is being typed after the name of a trait/type of an impl it is being // parsed as a macro, so when the trait/impl has a block following it an we are between the // name and block the macro will attach the block to itself so maximizing fails to take // that into account // FIXME path expr and statement have a similar problem with attrs Some(call) if call.excl_token().is_none() && call.token_tree().map_or(false, |t| t.l_curly_token().is_some()) && call.semicolon_token().is_none() => { call.syntax().clone() } _ => node, }; let prev_sibling = non_trivia_sibling(node.into(), Direction::Prev)?.into_node()?; let res = match_ast! { match prev_sibling { ast::ExprStmt(it) => { let node = it.expr().filter(|_| it.semicolon_token().is_none())?.syntax().clone(); match_ast! { match node { ast::IfExpr(_it) => ImmediatePrevSibling::IfExpr, _ => return None, } } }, ast::Trait(it) => if it.assoc_item_list().is_none() { ImmediatePrevSibling::TraitDefName } else { return None }, ast::Impl(it) => if it.assoc_item_list().is_none() && (it.for_token().is_none() || it.self_ty().is_some()) { ImmediatePrevSibling::ImplDefType } else { return None }, _ => return None, } }; Some(res) } pub(crate) fn determine_location(name_like: &ast::NameLike) -> Option { let node = maximize_name_ref(name_like)?; let parent = match node.parent() { Some(parent) => match ast::MacroCall::cast(parent.clone()) { // When a path is being typed in an (Assoc)ItemList the parser will always emit a macro_call. // This is usually fine as the node expansion code above already accounts for that with // the ancestors call, but there is one exception to this which is that when an attribute // precedes it the code above will not walk the Path to the parent MacroCall as their ranges differ. // FIXME path expr and statement have a similar problem Some(call) if call.excl_token().is_none() && call.token_tree().is_none() && call.semicolon_token().is_none() => { call.syntax().parent()? } _ => parent, }, // SourceFile None => { return match node.kind() { MACRO_ITEMS | SOURCE_FILE => Some(ImmediateLocation::ItemList), _ => None, } } }; let res = match_ast! { match parent { ast::IdentPat(_it) => ImmediateLocation::IdentPat, ast::Use(_it) => ImmediateLocation::Use, ast::BlockExpr(_it) => ImmediateLocation::BlockExpr, ast::SourceFile(_it) => ImmediateLocation::ItemList, ast::ItemList(_it) => ImmediateLocation::ItemList, ast::RefExpr(_it) => ImmediateLocation::RefExpr, ast::RecordField(_it) => ImmediateLocation::RecordField, ast::AssocItemList(it) => match it.syntax().parent().map(|it| it.kind()) { Some(IMPL) => ImmediateLocation::Impl, Some(TRAIT) => ImmediateLocation::Trait, _ => return None, }, _ => return None, } }; Some(res) } fn maximize_name_ref(name_like: &ast::NameLike) -> Option { // First walk the element we are completing up to its highest node that has the same text range // as the element so that we can check in what context it immediately lies. We only do this for // NameRef -> Path as that's the only thing that makes sense to being "expanded" semantically. // We only wanna do this if the NameRef is the last segment of the path. let node = match name_like { ast::NameLike::NameRef(name_ref) => { if let Some(segment) = name_ref.syntax().parent().and_then(ast::PathSegment::cast) { let p = segment.parent_path(); if p.parent_path().is_none() { p.syntax() .ancestors() .take_while(|it| it.text_range() == p.syntax().text_range()) .last()? } else { return None; } } else { return None; } } it @ ast::NameLike::Name(_) | it @ ast::NameLike::Lifetime(_) => it.syntax().clone(), }; Some(node) } pub(crate) fn inside_impl_trait_block(element: SyntaxElement) -> bool { // Here we search `impl` keyword up through the all ancestors, unlike in `has_impl_parent`, // where we only check the first parent with different text range. element .ancestors() .find(|it| it.kind() == IMPL) .map(|it| ast::Impl::cast(it).unwrap()) .map(|it| it.trait_().is_some()) .unwrap_or(false) } #[test] fn test_inside_impl_trait_block() { check_pattern_is_applicable(r"impl Foo for Bar { f$0 }", inside_impl_trait_block); check_pattern_is_applicable(r"impl Foo for Bar { fn f$0 }", inside_impl_trait_block); check_pattern_is_not_applicable(r"impl A { f$0 }", inside_impl_trait_block); check_pattern_is_not_applicable(r"impl A { fn f$0 }", inside_impl_trait_block); } pub(crate) fn is_match_arm(element: SyntaxElement) -> bool { not_same_range_ancestor(element.clone()).filter(|it| it.kind() == MATCH_ARM).is_some() && previous_sibling_or_ancestor_sibling(element) .and_then(|it| it.into_token()) .filter(|it| it.kind() == FAT_ARROW) .is_some() } #[test] fn test_is_match_arm() { check_pattern_is_applicable(r"fn my_fn() { match () { () => m$0 } }", is_match_arm); } pub(crate) fn previous_token(element: SyntaxElement) -> Option { element.into_token().and_then(|it| previous_non_trivia_token(it)) } /// Check if the token previous to the previous one is `for`. /// For example, `for _ i$0` => true. pub(crate) fn for_is_prev2(element: SyntaxElement) -> bool { element .into_token() .and_then(|it| previous_non_trivia_token(it)) .and_then(|it| previous_non_trivia_token(it)) .filter(|it| it.kind() == T![for]) .is_some() } #[test] fn test_for_is_prev2() { check_pattern_is_applicable(r"for i i$0", for_is_prev2); } pub(crate) fn is_in_loop_body(element: SyntaxElement) -> bool { element .ancestors() .take_while(|it| it.kind() != FN && it.kind() != CLOSURE_EXPR) .find_map(|it| { let loop_body = match_ast! { match it { ast::ForExpr(it) => it.loop_body(), ast::WhileExpr(it) => it.loop_body(), ast::LoopExpr(it) => it.loop_body(), _ => None, } }; loop_body.filter(|it| it.syntax().text_range().contains_range(element.text_range())) }) .is_some() } pub(crate) fn not_same_range_ancestor(element: SyntaxElement) -> Option { element.ancestors().skip_while(|it| it.text_range() == element.text_range()).next() } fn previous_non_trivia_token(token: SyntaxToken) -> Option { let mut token = token.prev_token(); while let Some(inner) = token.clone() { if !inner.kind().is_trivia() { return Some(inner); } else { token = inner.prev_token(); } } None } fn previous_sibling_or_ancestor_sibling(element: SyntaxElement) -> Option { let token_sibling = non_trivia_sibling(element.clone(), Direction::Prev); if let Some(sibling) = token_sibling { Some(sibling) } else { // if not trying to find first ancestor which has such a sibling let range = element.text_range(); let top_node = element.ancestors().take_while(|it| it.text_range() == range).last()?; let prev_sibling_node = top_node.ancestors().find(|it| { non_trivia_sibling(NodeOrToken::Node(it.to_owned()), Direction::Prev).is_some() })?; non_trivia_sibling(NodeOrToken::Node(prev_sibling_node), Direction::Prev) } } #[cfg(test)] mod tests { use super::*; fn check_location(code: &str, loc: impl Into>) { check_pattern_is_applicable(code, |e| { let name = &e.parent().and_then(ast::NameLike::cast).expect("Expected a namelike"); assert_eq!(determine_location(name), loc.into()); true }); } fn check_prev_sibling(code: &str, sibling: impl Into>) { check_pattern_is_applicable(code, |e| { let name = &e.parent().and_then(ast::NameLike::cast).expect("Expected a namelike"); assert_eq!(determine_prev_sibling(name), sibling.into()); true }); } #[test] fn test_trait_loc() { check_location(r"trait A { f$0 }", ImmediateLocation::Trait); check_location(r"trait A { #[attr] f$0 }", ImmediateLocation::Trait); check_location(r"trait A { f$0 fn f() {} }", ImmediateLocation::Trait); check_location(r"trait A { fn f() {} f$0 }", ImmediateLocation::Trait); check_location(r"trait A$0 {}", None); check_location(r"trait A { fn f$0 }", None); } #[test] fn test_impl_loc() { check_location(r"impl A { f$0 }", ImmediateLocation::Impl); check_location(r"impl A { #[attr] f$0 }", ImmediateLocation::Impl); check_location(r"impl A { f$0 fn f() {} }", ImmediateLocation::Impl); check_location(r"impl A { fn f() {} f$0 }", ImmediateLocation::Impl); check_location(r"impl A$0 {}", None); check_location(r"impl A { fn f$0 }", None); } #[test] fn test_use_loc() { check_location(r"use f$0", ImmediateLocation::Use); check_location(r"use f$0;", ImmediateLocation::Use); check_location(r"use f::{f$0}", None); check_location(r"use {f$0}", None); } #[test] fn test_record_field_loc() { check_location(r"struct Foo { f$0 }", ImmediateLocation::RecordField); check_location(r"struct Foo { f$0 pub f: i32}", ImmediateLocation::RecordField); check_location(r"struct Foo { pub f: i32, f$0 }", ImmediateLocation::RecordField); } #[test] fn test_block_expr_loc() { check_location(r"fn my_fn() { let a = 2; f$0 }", ImmediateLocation::BlockExpr); check_location(r"fn my_fn() { f$0 f }", ImmediateLocation::BlockExpr); } #[test] fn test_ident_pat_loc() { check_location(r"fn my_fn(m$0) {}", ImmediateLocation::IdentPat); check_location(r"fn my_fn() { let m$0 }", ImmediateLocation::IdentPat); check_location(r"fn my_fn(&m$0) {}", ImmediateLocation::IdentPat); check_location(r"fn my_fn() { let &m$0 }", ImmediateLocation::IdentPat); } #[test] fn test_ref_expr_loc() { check_location(r"fn my_fn() { let x = &m$0 foo; }", ImmediateLocation::RefExpr); } #[test] fn test_item_list_loc() { check_location(r"i$0", ImmediateLocation::ItemList); check_location(r"#[attr] i$0", ImmediateLocation::ItemList); check_location(r"fn f() {} i$0", ImmediateLocation::ItemList); check_location(r"mod foo { f$0 }", ImmediateLocation::ItemList); check_location(r"mod foo { #[attr] f$0 }", ImmediateLocation::ItemList); check_location(r"mod foo { fn f() {} f$0 }", ImmediateLocation::ItemList); check_location(r"mod foo$0 {}", None); } #[test] fn test_impl_prev_sibling() { check_prev_sibling(r"impl A w$0 ", ImmediatePrevSibling::ImplDefType); check_prev_sibling(r"impl A w$0 {}", ImmediatePrevSibling::ImplDefType); check_prev_sibling(r"impl A for A w$0 ", ImmediatePrevSibling::ImplDefType); check_prev_sibling(r"impl A for A w$0 {}", ImmediatePrevSibling::ImplDefType); check_prev_sibling(r"impl A for w$0 {}", None); check_prev_sibling(r"impl A for w$0", None); } #[test] fn test_trait_prev_sibling() { check_prev_sibling(r"trait A w$0 ", ImmediatePrevSibling::TraitDefName); check_prev_sibling(r"trait A w$0 {}", ImmediatePrevSibling::TraitDefName); } #[test] fn test_if_expr_prev_sibling() { check_prev_sibling(r"fn foo() { if true {} w$0", ImmediatePrevSibling::IfExpr); check_prev_sibling(r"fn foo() { if true {}; w$0", None); } }