//! Patterns telling us certain facts about current syntax element, they are used in completion context use syntax::{ algo::non_trivia_sibling, ast::{self, LoopBodyOwner}, match_ast, AstNode, Direction, NodeOrToken, SyntaxElement, SyntaxKind::{self, *}, SyntaxNode, SyntaxToken, T, }; #[cfg(test)] use crate::test_utils::{check_pattern_is_applicable, check_pattern_is_not_applicable}; /// Direct parent container of the cursor position #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) enum ImmediateLocation { Impl, Trait, RecordField, RefExpr, IdentPat, BlockExpr, ItemList, } pub(crate) fn determine_location(tok: SyntaxToken) -> Option { // First "expand" the element we are completing to its maximum so that we can check in what // context it immediately lies. This for example means if the token is a NameRef at the end of // a path, we want to look at where the path is in the tree. let node = match tok.parent().and_then(ast::NameLike::cast)? { ast::NameLike::NameRef(name_ref) => { if let Some(segment) = name_ref.syntax().parent().and_then(ast::PathSegment::cast) { let p = segment.parent_path(); if p.parent_path().is_none() { p.syntax() .ancestors() .take_while(|it| it.text_range() == p.syntax().text_range()) .last()? } else { return None; } } else { return None; } } it @ ast::NameLike::Name(_) | it @ ast::NameLike::Lifetime(_) => it.syntax().clone(), }; let parent = match node.parent() { Some(parent) => parent, // SourceFile None => { return match node.kind() { MACRO_ITEMS | SOURCE_FILE => Some(ImmediateLocation::ItemList), _ => None, } } }; let res = match_ast! { match parent { ast::IdentPat(_it) => ImmediateLocation::IdentPat, ast::BlockExpr(_it) => ImmediateLocation::BlockExpr, ast::SourceFile(_it) => ImmediateLocation::ItemList, ast::ItemList(_it) => ImmediateLocation::ItemList, ast::RefExpr(_it) => ImmediateLocation::RefExpr, ast::RecordField(_it) => ImmediateLocation::RecordField, ast::AssocItemList(it) => match it.syntax().parent().map(|it| it.kind()) { Some(IMPL) => ImmediateLocation::Impl, Some(TRAIT) => ImmediateLocation::Trait, _ => return None, }, _ => return None, } }; Some(res) } #[cfg(test)] fn check_location(code: &str, loc: ImmediateLocation) { check_pattern_is_applicable(code, |e| { assert_eq!(determine_location(e.into_token().expect("Expected a token")), Some(loc)); true }); } #[test] fn test_has_trait_parent() { check_location(r"trait A { f$0 }", ImmediateLocation::Trait); } #[test] fn test_has_impl_parent() { check_location(r"impl A { f$0 }", ImmediateLocation::Impl); } #[test] fn test_has_field_list_parent() { check_location(r"struct Foo { f$0 }", ImmediateLocation::RecordField); check_location(r"struct Foo { f$0 pub f: i32}", ImmediateLocation::RecordField); } #[test] fn test_has_block_expr_parent() { check_location(r"fn my_fn() { let a = 2; f$0 }", ImmediateLocation::BlockExpr); } #[test] fn test_has_ident_pat_parent() { check_location(r"fn my_fn(m$0) {}", ImmediateLocation::IdentPat); check_location(r"fn my_fn() { let m$0 }", ImmediateLocation::IdentPat); check_location(r"fn my_fn(&m$0) {}", ImmediateLocation::IdentPat); check_location(r"fn my_fn() { let &m$0 }", ImmediateLocation::IdentPat); } #[test] fn test_has_ref_expr_parent() { check_location(r"fn my_fn() { let x = &m$0 foo; }", ImmediateLocation::RefExpr); } #[test] fn test_has_item_list_or_source_file_parent() { check_location(r"i$0", ImmediateLocation::ItemList); check_location(r"mod foo { f$0 }", ImmediateLocation::ItemList); } pub(crate) fn inside_impl_trait_block(element: SyntaxElement) -> bool { // Here we search `impl` keyword up through the all ancestors, unlike in `has_impl_parent`, // where we only check the first parent with different text range. element .ancestors() .find(|it| it.kind() == IMPL) .map(|it| ast::Impl::cast(it).unwrap()) .map(|it| it.trait_().is_some()) .unwrap_or(false) } #[test] fn test_inside_impl_trait_block() { check_pattern_is_applicable(r"impl Foo for Bar { f$0 }", inside_impl_trait_block); check_pattern_is_applicable(r"impl Foo for Bar { fn f$0 }", inside_impl_trait_block); check_pattern_is_not_applicable(r"impl A { f$0 }", inside_impl_trait_block); check_pattern_is_not_applicable(r"impl A { fn f$0 }", inside_impl_trait_block); } pub(crate) fn is_match_arm(element: SyntaxElement) -> bool { not_same_range_ancestor(element.clone()).filter(|it| it.kind() == MATCH_ARM).is_some() && previous_sibling_or_ancestor_sibling(element) .and_then(|it| it.into_token()) .filter(|it| it.kind() == FAT_ARROW) .is_some() } #[test] fn test_is_match_arm() { check_pattern_is_applicable(r"fn my_fn() { match () { () => m$0 } }", is_match_arm); } pub(crate) fn previous_token(element: SyntaxElement) -> Option { element.into_token().and_then(|it| previous_non_trivia_token(it)) } /// Check if the token previous to the previous one is `for`. /// For example, `for _ i$0` => true. pub(crate) fn for_is_prev2(element: SyntaxElement) -> bool { element .into_token() .and_then(|it| previous_non_trivia_token(it)) .and_then(|it| previous_non_trivia_token(it)) .filter(|it| it.kind() == T![for]) .is_some() } #[test] fn test_for_is_prev2() { check_pattern_is_applicable(r"for i i$0", for_is_prev2); } pub(crate) fn has_prev_sibling(element: SyntaxElement, kind: SyntaxKind) -> bool { previous_sibling_or_ancestor_sibling(element).filter(|it| it.kind() == kind).is_some() } #[test] fn test_has_impl_as_prev_sibling() { check_pattern_is_applicable(r"impl A w$0 {}", |it| has_prev_sibling(it, IMPL)); } pub(crate) fn is_in_loop_body(element: SyntaxElement) -> bool { element .ancestors() .take_while(|it| it.kind() != FN && it.kind() != CLOSURE_EXPR) .find_map(|it| { let loop_body = match_ast! { match it { ast::ForExpr(it) => it.loop_body(), ast::WhileExpr(it) => it.loop_body(), ast::LoopExpr(it) => it.loop_body(), _ => None, } }; loop_body.filter(|it| it.syntax().text_range().contains_range(element.text_range())) }) .is_some() } pub(crate) fn not_same_range_ancestor(element: SyntaxElement) -> Option { element.ancestors().skip_while(|it| it.text_range() == element.text_range()).next() } fn previous_non_trivia_token(token: SyntaxToken) -> Option { let mut token = token.prev_token(); while let Some(inner) = token.clone() { if !inner.kind().is_trivia() { return Some(inner); } else { token = inner.prev_token(); } } None } fn previous_sibling_or_ancestor_sibling(element: SyntaxElement) -> Option { let token_sibling = non_trivia_sibling(element.clone(), Direction::Prev); if let Some(sibling) = token_sibling { Some(sibling) } else { // if not trying to find first ancestor which has such a sibling let range = element.text_range(); let top_node = element.ancestors().take_while(|it| it.text_range() == range).last()?; let prev_sibling_node = top_node.ancestors().find(|it| { non_trivia_sibling(NodeOrToken::Node(it.to_owned()), Direction::Prev).is_some() })?; non_trivia_sibling(NodeOrToken::Node(prev_sibling_node), Direction::Prev) } }