//! Handle syntactic aspects of merging UseTrees. use std::cmp::Ordering; use itertools::{EitherOrBoth, Itertools}; use syntax::{ ast::{self, make, AstNode, AttrsOwner, PathSegmentKind, VisibilityOwner}, ted, }; /// What type of merges are allowed. #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum MergeBehavior { /// Merge imports from the same crate into a single use statement. Crate, /// Merge imports from the same module into a single use statement. Module, } impl MergeBehavior { #[inline] fn is_tree_allowed(&self, tree: &ast::UseTree) -> bool { match self { MergeBehavior::Crate => true, // only simple single segment paths are allowed MergeBehavior::Module => { tree.use_tree_list().is_none() && tree.path().map(path_len) <= Some(1) } } } } pub fn try_merge_imports( lhs: &ast::Use, rhs: &ast::Use, merge_behavior: MergeBehavior, ) -> Option { // don't merge imports with different visibilities if !eq_visibility(lhs.visibility(), rhs.visibility()) { return None; } if !eq_attrs(lhs.attrs(), rhs.attrs()) { return None; } let lhs = lhs.clone_subtree().clone_for_update(); let lhs_tree = lhs.use_tree()?; let rhs_tree = rhs.use_tree()?; let merged = try_merge_trees(&lhs_tree, &rhs_tree, merge_behavior)?; ted::replace(lhs_tree.syntax(), merged.syntax()); Some(lhs) } pub fn try_merge_trees( lhs: &ast::UseTree, rhs: &ast::UseTree, merge: MergeBehavior, ) -> Option { let lhs_path = lhs.path()?; let rhs_path = rhs.path()?; let (lhs_prefix, rhs_prefix) = common_prefix(&lhs_path, &rhs_path)?; let (lhs, rhs) = if lhs.is_simple_path() && rhs.is_simple_path() && lhs_path == lhs_prefix && rhs_path == rhs_prefix { (lhs.clone(), rhs.clone()) } else { (lhs.split_prefix(&lhs_prefix), rhs.split_prefix(&rhs_prefix)) }; recursive_merge(&lhs, &rhs, merge).map(|it| it.clone_for_update()) } /// Recursively "zips" together lhs and rhs. fn recursive_merge( lhs: &ast::UseTree, rhs: &ast::UseTree, merge: MergeBehavior, ) -> Option { let mut use_trees = lhs .use_tree_list() .into_iter() .flat_map(|list| list.use_trees()) // We use Option here to early return from this function(this is not the // same as a `filter` op). .map(|tree| match merge.is_tree_allowed(&tree) { true => Some(tree), false => None, }) .collect::>>()?; use_trees.sort_unstable_by(|a, b| path_cmp_for_sort(a.path(), b.path())); for rhs_t in rhs.use_tree_list().into_iter().flat_map(|list| list.use_trees()) { if !merge.is_tree_allowed(&rhs_t) { return None; } let rhs_path = rhs_t.path(); match use_trees.binary_search_by(|lhs_t| { let (lhs_t, rhs_t) = match lhs_t .path() .zip(rhs_path.clone()) .and_then(|(lhs, rhs)| common_prefix(&lhs, &rhs)) { Some((lhs_p, rhs_p)) => (lhs_t.split_prefix(&lhs_p), rhs_t.split_prefix(&rhs_p)), None => (lhs_t.clone(), rhs_t.clone()), }; path_cmp_bin_search(lhs_t.path(), rhs_t.path()) }) { Ok(idx) => { let lhs_t = &mut use_trees[idx]; let lhs_path = lhs_t.path()?; let rhs_path = rhs_path?; let (lhs_prefix, rhs_prefix) = common_prefix(&lhs_path, &rhs_path)?; if lhs_prefix == lhs_path && rhs_prefix == rhs_path { let tree_is_self = |tree: ast::UseTree| { tree.path().as_ref().map(path_is_self).unwrap_or(false) }; // Check if only one of the two trees has a tree list, and // whether that then contains `self` or not. If this is the // case we can skip this iteration since the path without // the list is already included in the other one via `self`. let tree_contains_self = |tree: &ast::UseTree| { tree.use_tree_list() .map(|tree_list| tree_list.use_trees().any(tree_is_self)) .unwrap_or(false) }; match (tree_contains_self(&lhs_t), tree_contains_self(&rhs_t)) { (true, false) => continue, (false, true) => { *lhs_t = rhs_t; continue; } _ => (), } // Glob imports aren't part of the use-tree lists so we need // to special handle them here as well this special handling // is only required for when we merge a module import into a // glob import of said module see the `merge_self_glob` or // `merge_mod_into_glob` tests. if lhs_t.star_token().is_some() || rhs_t.star_token().is_some() { *lhs_t = make::use_tree( make::path_unqualified(make::path_segment_self()), None, None, false, ); use_trees.insert(idx, make::use_tree_glob()); continue; } if lhs_t.use_tree_list().is_none() && rhs_t.use_tree_list().is_none() { continue; } } let lhs = lhs_t.split_prefix(&lhs_prefix); let rhs = rhs_t.split_prefix(&rhs_prefix); match recursive_merge(&lhs, &rhs, merge) { Some(use_tree) => use_trees[idx] = use_tree, None => return None, } } Err(_) if merge == MergeBehavior::Module && use_trees.len() > 0 && rhs_t.use_tree_list().is_some() => { return None } Err(idx) => { use_trees.insert(idx, rhs_t); } } } let lhs = lhs.clone_subtree().clone_for_update(); if let Some(old) = lhs.use_tree_list() { ted::replace(old.syntax(), make::use_tree_list(use_trees).syntax().clone_for_update()); } ast::UseTree::cast(lhs.syntax().clone_subtree()) } /// Traverses both paths until they differ, returning the common prefix of both. fn common_prefix(lhs: &ast::Path, rhs: &ast::Path) -> Option<(ast::Path, ast::Path)> { let mut res = None; let mut lhs_curr = lhs.first_qualifier_or_self(); let mut rhs_curr = rhs.first_qualifier_or_self(); loop { match (lhs_curr.segment(), rhs_curr.segment()) { (Some(lhs), Some(rhs)) if lhs.syntax().text() == rhs.syntax().text() => (), _ => break res, } res = Some((lhs_curr.clone(), rhs_curr.clone())); match lhs_curr.parent_path().zip(rhs_curr.parent_path()) { Some((lhs, rhs)) => { lhs_curr = lhs; rhs_curr = rhs; } _ => break res, } } } /// Orders paths in the following way: /// the sole self token comes first, after that come uppercase identifiers, then lowercase identifiers // FIXME: rustfmt sorts lowercase idents before uppercase, in general we want to have the same ordering rustfmt has // which is `self` and `super` first, then identifier imports with lowercase ones first, then glob imports and at last list imports. // Example foo::{self, foo, baz, Baz, Qux, *, {Bar}} fn path_cmp_for_sort(a: Option, b: Option) -> Ordering { match (a, b) { (None, None) => Ordering::Equal, (None, Some(_)) => Ordering::Less, (Some(_), None) => Ordering::Greater, (Some(ref a), Some(ref b)) => match (path_is_self(a), path_is_self(b)) { (true, true) => Ordering::Equal, (true, false) => Ordering::Less, (false, true) => Ordering::Greater, (false, false) => path_cmp_short(a, b), }, } } /// Path comparison func for binary searching for merging. fn path_cmp_bin_search(lhs: Option, rhs: Option) -> Ordering { match ( lhs.as_ref().and_then(ast::Path::first_segment), rhs.as_ref().and_then(ast::Path::first_segment), ) { (None, None) => Ordering::Equal, (None, Some(_)) => Ordering::Less, (Some(_), None) => Ordering::Greater, (Some(ref a), Some(ref b)) => path_segment_cmp(a, b), } } /// Short circuiting comparison, if both paths are equal until one of them ends they are considered /// equal fn path_cmp_short(a: &ast::Path, b: &ast::Path) -> Ordering { let a = a.segments(); let b = b.segments(); // cmp_by would be useful for us here but that is currently unstable // cmp doesn't work due the lifetimes on text's return type a.zip(b) .find_map(|(a, b)| match path_segment_cmp(&a, &b) { Ordering::Equal => None, ord => Some(ord), }) .unwrap_or(Ordering::Equal) } /// Compares two paths, if one ends earlier than the other the has_tl parameters decide which is /// greater as a a path that has a tree list should be greater, while one that just ends without /// a tree list should be considered less. pub(super) fn use_tree_path_cmp( a: &ast::Path, a_has_tl: bool, b: &ast::Path, b_has_tl: bool, ) -> Ordering { let a_segments = a.segments(); let b_segments = b.segments(); // cmp_by would be useful for us here but that is currently unstable // cmp doesn't work due the lifetimes on text's return type a_segments .zip_longest(b_segments) .find_map(|zipped| match zipped { EitherOrBoth::Both(ref a, ref b) => match path_segment_cmp(a, b) { Ordering::Equal => None, ord => Some(ord), }, EitherOrBoth::Left(_) if !b_has_tl => Some(Ordering::Greater), EitherOrBoth::Left(_) => Some(Ordering::Less), EitherOrBoth::Right(_) if !a_has_tl => Some(Ordering::Less), EitherOrBoth::Right(_) => Some(Ordering::Greater), }) .unwrap_or(Ordering::Equal) } fn path_segment_cmp(a: &ast::PathSegment, b: &ast::PathSegment) -> Ordering { let a = a.kind().and_then(|kind| match kind { PathSegmentKind::Name(name_ref) => Some(name_ref), _ => None, }); let b = b.kind().and_then(|kind| match kind { PathSegmentKind::Name(name_ref) => Some(name_ref), _ => None, }); a.as_ref().map(ast::NameRef::text).cmp(&b.as_ref().map(ast::NameRef::text)) } fn eq_visibility(vis0: Option, vis1: Option) -> bool { match (vis0, vis1) { (None, None) => true, // FIXME: Don't use the string representation to check for equality // spaces inside of the node would break this comparison (Some(vis0), Some(vis1)) => vis0.to_string() == vis1.to_string(), _ => false, } } fn eq_attrs( attrs0: impl Iterator, attrs1: impl Iterator, ) -> bool { let attrs0 = attrs0.map(|attr| attr.to_string()); let attrs1 = attrs1.map(|attr| attr.to_string()); attrs0.eq(attrs1) } fn path_is_self(path: &ast::Path) -> bool { path.segment().and_then(|seg| seg.self_token()).is_some() && path.qualifier().is_none() } fn path_len(path: ast::Path) -> usize { path.segments().count() }