//! Implementation of find-usages functionality. //! //! It is based on the standard ide trick: first, we run a fast text search to //! get a super-set of matches. Then, we we confirm each match using precise //! name resolution. use std::{convert::TryInto, mem}; use base_db::{FileId, FileRange, SourceDatabaseExt}; use hir::{DefWithBody, HasSource, Module, ModuleSource, Semantics, Visibility}; use once_cell::unsync::Lazy; use rustc_hash::FxHashMap; use syntax::{ast, match_ast, AstNode, TextRange, TextSize}; use crate::defs::NameClass; use crate::{ defs::{Definition, NameRefClass}, RootDatabase, }; #[derive(Debug, Clone)] pub struct Reference { pub file_range: FileRange, pub kind: ReferenceKind, pub access: Option, } #[derive(Debug, Clone, PartialEq)] pub enum ReferenceKind { FieldShorthandForField, FieldShorthandForLocal, StructLiteral, RecordFieldExprOrPat, SelfKw, EnumLiteral, Lifetime, Other, } #[derive(Debug, Copy, Clone, PartialEq)] pub enum ReferenceAccess { Read, Write, } /// Generally, `search_scope` returns files that might contain references for the element. /// For `pub(crate)` things it's a crate, for `pub` things it's a crate and dependant crates. /// In some cases, the location of the references is known to within a `TextRange`, /// e.g. for things like local variables. pub struct SearchScope { entries: FxHashMap>, } impl SearchScope { fn new(entries: FxHashMap>) -> SearchScope { SearchScope { entries } } pub fn empty() -> SearchScope { SearchScope::new(FxHashMap::default()) } pub fn single_file(file: FileId) -> SearchScope { SearchScope::new(std::iter::once((file, None)).collect()) } pub fn files(files: &[FileId]) -> SearchScope { SearchScope::new(files.iter().map(|f| (*f, None)).collect()) } pub fn intersection(&self, other: &SearchScope) -> SearchScope { let (mut small, mut large) = (&self.entries, &other.entries); if small.len() > large.len() { mem::swap(&mut small, &mut large) } let res = small .iter() .filter_map(|(file_id, r1)| { let r2 = large.get(file_id)?; let r = intersect_ranges(*r1, *r2)?; Some((*file_id, r)) }) .collect(); return SearchScope::new(res); fn intersect_ranges( r1: Option, r2: Option, ) -> Option> { match (r1, r2) { (None, r) | (r, None) => Some(r), (Some(r1), Some(r2)) => { let r = r1.intersect(r2)?; Some(Some(r)) } } } } } impl IntoIterator for SearchScope { type Item = (FileId, Option); type IntoIter = std::collections::hash_map::IntoIter>; fn into_iter(self) -> Self::IntoIter { self.entries.into_iter() } } impl Definition { fn search_scope(&self, db: &RootDatabase) -> SearchScope { let _p = profile::span("search_scope"); let module = match self.module(db) { Some(it) => it, None => return SearchScope::empty(), }; let module_src = module.definition_source(db); let file_id = module_src.file_id.original_file(db); if let Definition::Local(var) = self { let range = match var.parent(db) { DefWithBody::Function(f) => f.source_old(db).value.syntax().text_range(), DefWithBody::Const(c) => c.source_old(db).value.syntax().text_range(), DefWithBody::Static(s) => s.source_old(db).value.syntax().text_range(), }; let mut res = FxHashMap::default(); res.insert(file_id, Some(range)); return SearchScope::new(res); } if let Definition::LifetimeParam(param) = self { let range = match param.parent(db) { hir::GenericDef::Function(it) => it.source_old(db).value.syntax().text_range(), hir::GenericDef::Adt(it) => match it { hir::Adt::Struct(it) => it.source_old(db).value.syntax().text_range(), hir::Adt::Union(it) => it.source_old(db).value.syntax().text_range(), hir::Adt::Enum(it) => it.source_old(db).value.syntax().text_range(), }, hir::GenericDef::Trait(it) => it.source_old(db).value.syntax().text_range(), hir::GenericDef::TypeAlias(it) => it.source_old(db).value.syntax().text_range(), hir::GenericDef::Impl(it) => it.source_old(db).value.syntax().text_range(), hir::GenericDef::Variant(it) => it.source_old(db).value.syntax().text_range(), hir::GenericDef::Const(it) => it.source_old(db).value.syntax().text_range(), }; let mut res = FxHashMap::default(); res.insert(file_id, Some(range)); return SearchScope::new(res); } let vis = self.visibility(db); if let Some(Visibility::Module(module)) = vis.and_then(|it| it.into()) { let module: Module = module.into(); let mut res = FxHashMap::default(); let mut to_visit = vec![module]; let mut is_first = true; while let Some(module) = to_visit.pop() { let src = module.definition_source(db); let file_id = src.file_id.original_file(db); match src.value { ModuleSource::Module(m) => { if is_first { let range = Some(m.syntax().text_range()); res.insert(file_id, range); } else { // We have already added the enclosing file to the search scope, // so do nothing. } } ModuleSource::SourceFile(_) => { res.insert(file_id, None); } }; is_first = false; to_visit.extend(module.children(db)); } return SearchScope::new(res); } if let Some(Visibility::Public) = vis { let source_root_id = db.file_source_root(file_id); let source_root = db.source_root(source_root_id); let mut res = source_root.iter().map(|id| (id, None)).collect::>(); let krate = module.krate(); for rev_dep in krate.reverse_dependencies(db) { let root_file = rev_dep.root_file(db); let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); res.extend(source_root.iter().map(|id| (id, None))); } return SearchScope::new(res); } let mut res = FxHashMap::default(); let range = match module_src.value { ModuleSource::Module(m) => Some(m.syntax().text_range()), ModuleSource::SourceFile(_) => None, }; res.insert(file_id, range); SearchScope::new(res) } pub fn usages<'a>(&'a self, sema: &'a Semantics) -> FindUsages<'a> { FindUsages { def: self, sema, scope: None } } } pub struct FindUsages<'a> { def: &'a Definition, sema: &'a Semantics<'a, RootDatabase>, scope: Option, } impl<'a> FindUsages<'a> { pub fn in_scope(self, scope: SearchScope) -> FindUsages<'a> { self.set_scope(Some(scope)) } pub fn set_scope(mut self, scope: Option) -> FindUsages<'a> { assert!(self.scope.is_none()); self.scope = scope; self } pub fn at_least_one(self) -> bool { let mut found = false; self.search(&mut |_reference| { found = true; true }); found } pub fn all(self) -> Vec { let mut res = Vec::new(); self.search(&mut |reference| { res.push(reference); false }); res } fn search(self, sink: &mut dyn FnMut(Reference) -> bool) { let _p = profile::span("FindUsages:search"); let sema = self.sema; let search_scope = { let base = self.def.search_scope(sema.db); match &self.scope { None => base, Some(scope) => base.intersection(scope), } }; let name = match self.def.name(sema.db) { Some(it) => it.to_string(), None => return, }; let pat = name.as_str(); for (file_id, search_range) in search_scope { let text = sema.db.file_text(file_id); let search_range = search_range.unwrap_or(TextRange::up_to(TextSize::of(text.as_str()))); let tree = Lazy::new(|| sema.parse(file_id).syntax().clone()); for (idx, _) in text.match_indices(pat) { let offset: TextSize = idx.try_into().unwrap(); if !search_range.contains_inclusive(offset) { continue; } if let Some(name_ref) = sema.find_node_at_offset_with_descend(&tree, offset) { if self.found_name_ref(&name_ref, sink) { return; } } else if let Some(name) = sema.find_node_at_offset_with_descend(&tree, offset) { if self.found_name(&name, sink) { return; } } else if let Some(lifetime) = sema.find_node_at_offset_with_descend(&tree, offset) { if self.found_lifetime(&lifetime, sink) { return; } } } } } fn found_lifetime( &self, lifetime: &ast::Lifetime, sink: &mut dyn FnMut(Reference) -> bool, ) -> bool { match NameRefClass::classify_lifetime(self.sema, lifetime) { Some(NameRefClass::Definition(def)) if &def == self.def => { let reference = Reference { file_range: self.sema.original_range(lifetime.syntax()), kind: ReferenceKind::Lifetime, access: None, }; sink(reference) } _ => false, // not a usage } } fn found_name_ref( &self, name_ref: &ast::NameRef, sink: &mut dyn FnMut(Reference) -> bool, ) -> bool { match NameRefClass::classify(self.sema, &name_ref) { Some(NameRefClass::Definition(def)) if &def == self.def => { let kind = if is_record_field_expr_or_pat(&name_ref) { ReferenceKind::RecordFieldExprOrPat } else if is_record_lit_name_ref(&name_ref) || is_call_expr_name_ref(&name_ref) { ReferenceKind::StructLiteral } else if is_enum_lit_name_ref(&name_ref) { ReferenceKind::EnumLiteral } else { ReferenceKind::Other }; let reference = Reference { file_range: self.sema.original_range(name_ref.syntax()), kind, access: reference_access(&def, &name_ref), }; sink(reference) } Some(NameRefClass::FieldShorthand { local_ref: local, field_ref: field }) => { let reference = match self.def { Definition::Field(_) if &field == self.def => Reference { file_range: self.sema.original_range(name_ref.syntax()), kind: ReferenceKind::FieldShorthandForField, access: reference_access(&field, &name_ref), }, Definition::Local(l) if &local == l => Reference { file_range: self.sema.original_range(name_ref.syntax()), kind: ReferenceKind::FieldShorthandForLocal, access: reference_access(&Definition::Local(local), &name_ref), }, _ => return false, // not a usage }; sink(reference) } _ => false, // not a usage } } fn found_name(&self, name: &ast::Name, sink: &mut dyn FnMut(Reference) -> bool) -> bool { match NameClass::classify(self.sema, name) { Some(NameClass::PatFieldShorthand { local_def: _, field_ref }) => { let reference = match self.def { Definition::Field(_) if &field_ref == self.def => Reference { file_range: self.sema.original_range(name.syntax()), kind: ReferenceKind::FieldShorthandForField, // FIXME: mutable patterns should have `Write` access access: Some(ReferenceAccess::Read), }, _ => return false, // not a usage }; sink(reference) } _ => false, // not a usage } } } fn reference_access(def: &Definition, name_ref: &ast::NameRef) -> Option { // Only Locals and Fields have accesses for now. if !matches!(def, Definition::Local(_) | Definition::Field(_)) { return None; } let mode = name_ref.syntax().ancestors().find_map(|node| { match_ast! { match (node) { ast::BinExpr(expr) => { if expr.op_kind()?.is_assignment() { // If the variable or field ends on the LHS's end then it's a Write (covers fields and locals). // FIXME: This is not terribly accurate. if let Some(lhs) = expr.lhs() { if lhs.syntax().text_range().end() == name_ref.syntax().text_range().end() { return Some(ReferenceAccess::Write); } } } Some(ReferenceAccess::Read) }, _ => None } } }); // Default Locals and Fields to read mode.or(Some(ReferenceAccess::Read)) } fn is_call_expr_name_ref(name_ref: &ast::NameRef) -> bool { name_ref .syntax() .ancestors() .find_map(ast::CallExpr::cast) .and_then(|c| match c.expr()? { ast::Expr::PathExpr(p) => { Some(p.path()?.segment()?.name_ref().as_ref() == Some(name_ref)) } _ => None, }) .unwrap_or(false) } fn is_record_lit_name_ref(name_ref: &ast::NameRef) -> bool { name_ref .syntax() .ancestors() .find_map(ast::RecordExpr::cast) .and_then(|l| l.path()) .and_then(|p| p.segment()) .map(|p| p.name_ref().as_ref() == Some(name_ref)) .unwrap_or(false) } fn is_record_field_expr_or_pat(name_ref: &ast::NameRef) -> bool { if let Some(parent) = name_ref.syntax().parent() { match_ast! { match parent { ast::RecordExprField(it) => true, ast::RecordPatField(_it) => true, _ => false, } } } else { false } } fn is_enum_lit_name_ref(name_ref: &ast::NameRef) -> bool { name_ref .syntax() .ancestors() .find_map(ast::PathExpr::cast) .and_then(|p| p.path()) .and_then(|p| p.qualifier()) .and_then(|p| p.segment()) .map(|p| p.name_ref().as_ref() == Some(name_ref)) .unwrap_or(false) }