//! This module takes a (parsed) definition of `macro_rules` invocation, a //! `tt::TokenTree` representing an argument of macro invocation, and produces a //! `tt::TokenTree` for the result of the expansion. mod matcher; mod transcriber; use rustc_hash::FxHashMap; use syntax::SmolStr; use crate::{ExpandError, ExpandResult}; pub(crate) fn expand_rules( rules: &[crate::Rule], input: &tt::Subtree, ) -> ExpandResult { let mut match_: Option<(matcher::Match, &crate::Rule)> = None; for rule in rules { let new_match = matcher::match_(&rule.lhs, input); if new_match.err.is_none() { // If we find a rule that applies without errors, we're done. // Unconditionally returning the transcription here makes the // `test_repeat_bad_var` test fail. let ExpandResult { value, err: transcribe_err } = transcriber::transcribe(&rule.rhs, &new_match.bindings); if transcribe_err.is_none() { return ExpandResult::ok(value); } } // Use the rule if we matched more tokens, or bound variables count if let Some((prev_match, _)) = &match_ { if (new_match.unmatched_tts, -(new_match.bound_count as i32)) < (prev_match.unmatched_tts, -(prev_match.bound_count as i32)) { match_ = Some((new_match, rule)); } } else { match_ = Some((new_match, rule)); } } if let Some((match_, rule)) = match_ { // if we got here, there was no match without errors let ExpandResult { value, err: transcribe_err } = transcriber::transcribe(&rule.rhs, &match_.bindings); ExpandResult { value, err: match_.err.or(transcribe_err) } } else { ExpandResult::only_err(ExpandError::NoMatchingRule) } } /// The actual algorithm for expansion is not too hard, but is pretty tricky. /// `Bindings` structure is the key to understanding what we are doing here. /// /// On the high level, it stores mapping from meta variables to the bits of /// syntax it should be substituted with. For example, if `$e:expr` is matched /// with `1 + 1` by macro_rules, the `Binding` will store `$e -> 1 + 1`. /// /// The tricky bit is dealing with repetitions (`$()*`). Consider this example: /// /// ```not_rust /// macro_rules! foo { /// ($($ i:ident $($ e:expr),*);*) => { /// $(fn $ i() { $($ e);*; })* /// } /// } /// foo! { foo 1,2,3; bar 4,5,6 } /// ``` /// /// Here, the `$i` meta variable is matched first with `foo` and then with /// `bar`, and `$e` is matched in turn with `1`, `2`, `3`, `4`, `5`, `6`. /// /// To represent such "multi-mappings", we use a recursive structures: we map /// variables not to values, but to *lists* of values or other lists (that is, /// to the trees). /// /// For the above example, the bindings would store /// /// ```not_rust /// i -> [foo, bar] /// e -> [[1, 2, 3], [4, 5, 6]] /// ``` /// /// We construct `Bindings` in the `match_lhs`. The interesting case is /// `TokenTree::Repeat`, where we use `push_nested` to create the desired /// nesting structure. /// /// The other side of the puzzle is `expand_subtree`, where we use the bindings /// to substitute meta variables in the output template. When expanding, we /// maintain a `nesting` stack of indices which tells us which occurrence from /// the `Bindings` we should take. We push to the stack when we enter a /// repetition. /// /// In other words, `Bindings` is a *multi* mapping from `SmolStr` to /// `tt::TokenTree`, where the index to select a particular `TokenTree` among /// many is not a plain `usize`, but an `&[usize]`. #[derive(Debug, Default, Clone, PartialEq, Eq)] struct Bindings { inner: FxHashMap, } #[derive(Debug, Clone, PartialEq, Eq)] enum Binding { Fragment(Fragment), Nested(Vec), Empty, } #[derive(Debug, Clone, PartialEq, Eq)] enum Fragment { /// token fragments are just copy-pasted into the output Tokens(tt::TokenTree), /// Ast fragments are inserted with fake delimiters, so as to make things /// like `$i * 2` where `$i = 1 + 1` work as expectd. Ast(tt::TokenTree), } #[cfg(test)] mod tests { use syntax::{ast, AstNode}; use super::*; use crate::ast_to_token_tree; #[test] fn test_expand_rule() { assert_err( "($($i:ident);*) => ($i)", "foo!{a}", ExpandError::BindingError(String::from( "expected simple binding, found nested binding `i`", )), ); // FIXME: // Add an err test case for ($($i:ident)) => ($()) } fn assert_err(macro_body: &str, invocation: &str, err: ExpandError) { assert_eq!( expand_first(&create_rules(&format_macro(macro_body)), invocation).err, Some(err) ); } fn format_macro(macro_body: &str) -> String { format!( " macro_rules! foo {{ {} }} ", macro_body ) } fn create_rules(macro_definition: &str) -> crate::MacroRules { let source_file = ast::SourceFile::parse(macro_definition).ok().unwrap(); let macro_definition = source_file.syntax().descendants().find_map(ast::MacroRules::cast).unwrap(); let (definition_tt, _) = ast_to_token_tree(¯o_definition.token_tree().unwrap()); crate::MacroRules::parse(&definition_tt).unwrap() } fn expand_first(rules: &crate::MacroRules, invocation: &str) -> ExpandResult { let source_file = ast::SourceFile::parse(invocation).ok().unwrap(); let macro_invocation = source_file.syntax().descendants().find_map(ast::MacroCall::cast).unwrap(); let (invocation_tt, _) = ast_to_token_tree(¯o_invocation.token_tree().unwrap()); expand_rules(&rules.rules, &invocation_tt) } }