use crate::{Assist, AssistId, AssistCtx}; use hir::Resolver; use hir::db::HirDatabase; use ra_syntax::{SmolStr, SyntaxKind, TextRange, TextUnit, TreeArc}; use ra_syntax::ast::{self, AstNode, FnDef, ImplItem, ImplItemKind, NameOwner}; use ra_db::FilePosition; use ra_fmt::{leading_indent, reindent}; use itertools::Itertools; pub(crate) fn add_missing_impl_members(mut ctx: AssistCtx) -> Option { let impl_node = ctx.node_at_offset::()?; let impl_item_list = impl_node.item_list()?; let trait_def = { let file_id = ctx.frange.file_id; let position = FilePosition { file_id, offset: impl_node.syntax().range().start() }; let resolver = hir::source_binder::resolver_for_position(ctx.db, position); resolve_target_trait_def(ctx.db, &resolver, impl_node)? }; let missing_fns: Vec<_> = { let fn_def_opt = |kind| if let ImplItemKind::FnDef(def) = kind { Some(def) } else { None }; let def_name = |def| -> Option<&SmolStr> { FnDef::name(def).map(ast::Name::text) }; let trait_items = trait_def.syntax().descendants().find_map(ast::ItemList::cast)?.impl_items(); let impl_items = impl_item_list.impl_items(); let trait_fns = trait_items.map(ImplItem::kind).filter_map(fn_def_opt).collect::>(); let impl_fns = impl_items.map(ImplItem::kind).filter_map(fn_def_opt).collect::>(); trait_fns .into_iter() .filter(|t| def_name(t).is_some()) .filter(|t| impl_fns.iter().all(|i| def_name(i) != def_name(t))) .collect() }; if missing_fns.is_empty() { return None; } ctx.add_action(AssistId("add_impl_missing_members"), "add missing impl members", |edit| { let (parent_indent, indent) = { // FIXME: Find a way to get the indent already used in the file. // Now, we copy the indent of first item or indent with 4 spaces relative to impl block const DEFAULT_INDENT: &str = " "; let first_item = impl_item_list.impl_items().next(); let first_item_indent = first_item.and_then(|i| leading_indent(i.syntax())).map(ToOwned::to_owned); let impl_block_indent = leading_indent(impl_node.syntax()).unwrap_or_default(); ( impl_block_indent.to_owned(), first_item_indent.unwrap_or_else(|| impl_block_indent.to_owned() + DEFAULT_INDENT), ) }; let changed_range = { let children = impl_item_list.syntax().children(); let last_whitespace = children.filter_map(ast::Whitespace::cast).last(); last_whitespace.map(|w| w.syntax().range()).unwrap_or_else(|| { let in_brackets = impl_item_list.syntax().range().end() - TextUnit::of_str("}"); TextRange::from_to(in_brackets, in_brackets) }) }; let func_bodies = format!("\n{}", missing_fns.into_iter().map(build_func_body).join("\n")); let trailing_whitespace = format!("\n{}", parent_indent); let func_bodies = reindent(&func_bodies, &indent) + &trailing_whitespace; let replaced_text_range = TextUnit::of_str(&func_bodies); edit.replace(changed_range, func_bodies); edit.set_cursor( changed_range.start() + replaced_text_range - TextUnit::of_str(&trailing_whitespace), ); }); ctx.build() } /// Given an `ast::ImplBlock`, resolves the target trait (the one being /// implemented) to a `ast::TraitDef`. fn resolve_target_trait_def( db: &impl HirDatabase, resolver: &Resolver, impl_block: &ast::ImplBlock, ) -> Option> { let ast_path = impl_block.target_trait().map(AstNode::syntax).and_then(ast::PathType::cast)?; let hir_path = ast_path.path().and_then(hir::Path::from_ast)?; match resolver.resolve_path(db, &hir_path).take_types() { Some(hir::Resolution::Def(hir::ModuleDef::Trait(def))) => Some(def.source(db).1), _ => None, } } fn build_func_body(def: &ast::FnDef) -> String { let mut buf = String::new(); for child in def.syntax().children() { if child.kind() == SyntaxKind::SEMI { buf.push_str(" { unimplemented!() }") } else { child.text().push_to(&mut buf); } } buf.trim_end().to_string() } #[cfg(test)] mod tests { use super::*; use crate::helpers::{check_assist, check_assist_not_applicable}; #[test] fn test_add_missing_impl_members() { check_assist( add_missing_impl_members, " trait Foo { fn foo(&self); fn bar(&self); fn baz(&self); } struct S; impl Foo for S { fn bar(&self) {} <|> }", " trait Foo { fn foo(&self); fn bar(&self); fn baz(&self); } struct S; impl Foo for S { fn bar(&self) {} fn foo(&self) { unimplemented!() } fn baz(&self) { unimplemented!() }<|> }", ); } #[test] fn test_copied_overriden_members() { check_assist( add_missing_impl_members, " trait Foo { fn foo(&self); fn bar(&self) -> bool { true } fn baz(&self) -> u32 { 42 } } struct S; impl Foo for S { fn bar(&self) {} <|> }", " trait Foo { fn foo(&self); fn bar(&self) -> bool { true } fn baz(&self) -> u32 { 42 } } struct S; impl Foo for S { fn bar(&self) {} fn foo(&self) { unimplemented!() } fn baz(&self) -> u32 { 42 }<|> }", ); } #[test] fn test_empty_impl_block() { check_assist( add_missing_impl_members, " trait Foo { fn foo(&self); } struct S; impl Foo for S {<|>}", " trait Foo { fn foo(&self); } struct S; impl Foo for S { fn foo(&self) { unimplemented!() }<|> }", ); } #[test] fn test_cursor_after_empty_impl_block() { check_assist( add_missing_impl_members, " trait Foo { fn foo(&self); } struct S; impl Foo for S {}<|>", " trait Foo { fn foo(&self); } struct S; impl Foo for S { fn foo(&self) { unimplemented!() }<|> }", ) } #[test] fn test_empty_trait() { check_assist_not_applicable( add_missing_impl_members, " trait Foo; struct S; impl Foo for S { <|> }", ) } #[test] fn test_ignore_unnamed_trait_members() { check_assist( add_missing_impl_members, " trait Foo { fn (arg: u32); fn valid(some: u32) -> bool { false } } struct S; impl Foo for S { <|> }", " trait Foo { fn (arg: u32); fn valid(some: u32) -> bool { false } } struct S; impl Foo for S { fn valid(some: u32) -> bool { false }<|> }", ) } #[test] fn test_indented_impl_block() { check_assist( add_missing_impl_members, " trait Foo { fn valid(some: u32) -> bool { false } } struct S; mod my_mod { impl crate::Foo for S { <|> } }", " trait Foo { fn valid(some: u32) -> bool { false } } struct S; mod my_mod { impl crate::Foo for S { fn valid(some: u32) -> bool { false }<|> } }", ) } }