//! Handle syntactic aspects of inserting a new `use`. // FIXME: rewrite according to the plan, outlined in // https://github.com/rust-analyzer/rust-analyzer/issues/3301#issuecomment-592931553 use hir::{self, ModPath}; use ra_syntax::{ ast::{self, NameOwner}, AstNode, Direction, SmolStr, SyntaxKind::{PATH, PATH_SEGMENT}, SyntaxNode, T, }; use ra_text_edit::TextEditBuilder; use crate::assist_context::AssistContext; use either::Either; /// Determines the containing syntax node in which to insert a `use` statement affecting `position`. pub(crate) fn find_insert_use_container( position: &SyntaxNode, ctx: &AssistContext, ) -> Option> { ctx.sema.ancestors_with_macros(position.clone()).find_map(|n| { if let Some(module) = ast::Module::cast(n.clone()) { return module.item_list().map(|it| Either::Left(it)); } Some(Either::Right(ast::SourceFile::cast(n)?)) }) } /// Creates and inserts a use statement for the given path to import. /// The use statement is inserted in the scope most appropriate to the /// the cursor position given, additionally merged with the existing use imports. pub(crate) fn insert_use_statement( // Ideally the position of the cursor, used to position: &SyntaxNode, path_to_import: &ModPath, ctx: &AssistContext, builder: &mut TextEditBuilder, ) { let target = path_to_import.to_string().split("::").map(SmolStr::new).collect::>(); let container = find_insert_use_container(position, ctx); if let Some(container) = container { let syntax = container.either(|l| l.syntax().clone(), |r| r.syntax().clone()); let action = best_action_for_target(syntax, position.clone(), &target); make_assist(&action, &target, builder); } } fn collect_path_segments_raw( segments: &mut Vec, mut path: ast::Path, ) -> Option { let oldlen = segments.len(); loop { let mut children = path.syntax().children_with_tokens(); let (first, second, third) = ( children.next().map(|n| (n.clone(), n.kind())), children.next().map(|n| (n.clone(), n.kind())), children.next().map(|n| (n.clone(), n.kind())), ); match (first, second, third) { (Some((subpath, PATH)), Some((_, T![::])), Some((segment, PATH_SEGMENT))) => { path = ast::Path::cast(subpath.as_node()?.clone())?; segments.push(ast::PathSegment::cast(segment.as_node()?.clone())?); } (Some((segment, PATH_SEGMENT)), _, _) => { segments.push(ast::PathSegment::cast(segment.as_node()?.clone())?); break; } (_, _, _) => return None, } } // We need to reverse only the new added segments let only_new_segments = segments.split_at_mut(oldlen).1; only_new_segments.reverse(); Some(segments.len() - oldlen) } fn fmt_segments_raw(segments: &[SmolStr], buf: &mut String) { let mut iter = segments.iter(); if let Some(s) = iter.next() { buf.push_str(s); } for s in iter { buf.push_str("::"); buf.push_str(s); } } /// Returns the number of common segments. fn compare_path_segments(left: &[SmolStr], right: &[ast::PathSegment]) -> usize { left.iter().zip(right).take_while(|(l, r)| compare_path_segment(l, r)).count() } fn compare_path_segment(a: &SmolStr, b: &ast::PathSegment) -> bool { if let Some(kb) = b.kind() { match kb { ast::PathSegmentKind::Name(nameref_b) => a == nameref_b.text(), ast::PathSegmentKind::SelfKw => a == "self", ast::PathSegmentKind::SuperKw => a == "super", ast::PathSegmentKind::CrateKw => a == "crate", ast::PathSegmentKind::Type { .. } => false, // not allowed in imports } } else { false } } fn compare_path_segment_with_name(a: &SmolStr, b: &ast::Name) -> bool { a == b.text() } #[derive(Clone, Debug)] enum ImportAction { Nothing, // Add a brand new use statement. AddNewUse { anchor: Option, // anchor node add_after_anchor: bool, }, // To split an existing use statement creating a nested import. AddNestedImport { // how may segments matched with the target path common_segments: usize, path_to_split: ast::Path, // the first segment of path_to_split we want to add into the new nested list first_segment_to_split: Option, // Wether to add 'self' in addition to the target path add_self: bool, }, // To add the target path to an existing nested import tree list. AddInTreeList { common_segments: usize, // The UseTreeList where to add the target path tree_list: ast::UseTreeList, add_self: bool, }, } impl ImportAction { fn add_new_use(anchor: Option, add_after_anchor: bool) -> Self { ImportAction::AddNewUse { anchor, add_after_anchor } } fn add_nested_import( common_segments: usize, path_to_split: ast::Path, first_segment_to_split: Option, add_self: bool, ) -> Self { ImportAction::AddNestedImport { common_segments, path_to_split, first_segment_to_split, add_self, } } fn add_in_tree_list( common_segments: usize, tree_list: ast::UseTreeList, add_self: bool, ) -> Self { ImportAction::AddInTreeList { common_segments, tree_list, add_self } } fn better(left: ImportAction, right: ImportAction) -> ImportAction { if left.is_better(&right) { left } else { right } } fn is_better(&self, other: &ImportAction) -> bool { match (self, other) { (ImportAction::Nothing, _) => true, (ImportAction::AddInTreeList { .. }, ImportAction::Nothing) => false, ( ImportAction::AddNestedImport { common_segments: n, .. }, ImportAction::AddInTreeList { common_segments: m, .. }, ) | ( ImportAction::AddInTreeList { common_segments: n, .. }, ImportAction::AddNestedImport { common_segments: m, .. }, ) | ( ImportAction::AddInTreeList { common_segments: n, .. }, ImportAction::AddInTreeList { common_segments: m, .. }, ) | ( ImportAction::AddNestedImport { common_segments: n, .. }, ImportAction::AddNestedImport { common_segments: m, .. }, ) => n > m, (ImportAction::AddInTreeList { .. }, _) => true, (ImportAction::AddNestedImport { .. }, ImportAction::Nothing) => false, (ImportAction::AddNestedImport { .. }, _) => true, (ImportAction::AddNewUse { .. }, _) => false, } } } // Find out the best ImportAction to import target path against current_use_tree. // If current_use_tree has a nested import the function gets called recursively on every UseTree inside a UseTreeList. fn walk_use_tree_for_best_action( current_path_segments: &mut Vec, // buffer containing path segments current_parent_use_tree_list: Option, // will be Some value if we are in a nested import current_use_tree: ast::UseTree, // the use tree we are currently examinating target: &[SmolStr], // the path we want to import ) -> ImportAction { // We save the number of segments in the buffer so we can restore the correct segments // before returning. Recursive call will add segments so we need to delete them. let prev_len = current_path_segments.len(); let tree_list = current_use_tree.use_tree_list(); let alias = current_use_tree.rename(); let path = match current_use_tree.path() { Some(path) => path, None => { // If the use item don't have a path, it means it's broken (syntax error) return ImportAction::add_new_use( current_use_tree .syntax() .ancestors() .find_map(ast::UseItem::cast) .map(|it| it.syntax().clone()), true, ); } }; // This can happen only if current_use_tree is a direct child of a UseItem if let Some(name) = alias.and_then(|it| it.name()) { if compare_path_segment_with_name(&target[0], &name) { return ImportAction::Nothing; } } collect_path_segments_raw(current_path_segments, path.clone()); // We compare only the new segments added in the line just above. // The first prev_len segments were already compared in 'parent' recursive calls. let left = target.split_at(prev_len).1; let right = current_path_segments.split_at(prev_len).1; let common = compare_path_segments(left, &right); let mut action = match common { 0 => ImportAction::add_new_use( // e.g: target is std::fmt and we can have // use foo::bar // We add a brand new use statement current_use_tree .syntax() .ancestors() .find_map(ast::UseItem::cast) .map(|it| it.syntax().clone()), true, ), common if common == left.len() && left.len() == right.len() => { // e.g: target is std::fmt and we can have // 1- use std::fmt; // 2- use std::fmt::{ ... } if let Some(list) = tree_list { // In case 2 we need to add self to the nested list // unless it's already there let has_self = list.use_trees().map(|it| it.path()).any(|p| { p.and_then(|it| it.segment()) .and_then(|it| it.kind()) .filter(|k| *k == ast::PathSegmentKind::SelfKw) .is_some() }); if has_self { ImportAction::Nothing } else { ImportAction::add_in_tree_list(current_path_segments.len(), list, true) } } else { // Case 1 ImportAction::Nothing } } common if common != left.len() && left.len() == right.len() => { // e.g: target is std::fmt and we have // use std::io; // We need to split. let segments_to_split = current_path_segments.split_at(prev_len + common).1; ImportAction::add_nested_import( prev_len + common, path, Some(segments_to_split[0].clone()), false, ) } common if common == right.len() && left.len() > right.len() => { // e.g: target is std::fmt and we can have // 1- use std; // 2- use std::{ ... }; // fallback action let mut better_action = ImportAction::add_new_use( current_use_tree .syntax() .ancestors() .find_map(ast::UseItem::cast) .map(|it| it.syntax().clone()), true, ); if let Some(list) = tree_list { // Case 2, check recursively if the path is already imported in the nested list for u in list.use_trees() { let child_action = walk_use_tree_for_best_action( current_path_segments, Some(list.clone()), u, target, ); if child_action.is_better(&better_action) { better_action = child_action; if let ImportAction::Nothing = better_action { return better_action; } } } } else { // Case 1, split adding self better_action = ImportAction::add_nested_import(prev_len + common, path, None, true) } better_action } common if common == left.len() && left.len() < right.len() => { // e.g: target is std::fmt and we can have // use std::fmt::Debug; let segments_to_split = current_path_segments.split_at(prev_len + common).1; ImportAction::add_nested_import( prev_len + common, path, Some(segments_to_split[0].clone()), true, ) } common if common < left.len() && common < right.len() => { // e.g: target is std::fmt::nested::Debug // use std::fmt::Display let segments_to_split = current_path_segments.split_at(prev_len + common).1; ImportAction::add_nested_import( prev_len + common, path, Some(segments_to_split[0].clone()), false, ) } _ => unreachable!(), }; // If we are inside a UseTreeList adding a use statement become adding to the existing // tree list. action = match (current_parent_use_tree_list, action.clone()) { (Some(use_tree_list), ImportAction::AddNewUse { .. }) => { ImportAction::add_in_tree_list(prev_len, use_tree_list, false) } (_, _) => action, }; // We remove the segments added current_path_segments.truncate(prev_len); action } fn best_action_for_target( container: SyntaxNode, anchor: SyntaxNode, target: &[SmolStr], ) -> ImportAction { let mut storage = Vec::with_capacity(16); // this should be the only allocation let best_action = container .children() .filter_map(ast::UseItem::cast) .filter_map(|it| it.use_tree()) .map(|u| walk_use_tree_for_best_action(&mut storage, None, u, target)) .fold(None, |best, a| match best { Some(best) => Some(ImportAction::better(best, a)), None => Some(a), }); match best_action { Some(action) => action, None => { // We have no action and no UseItem was found in container so we find // another item and we use it as anchor. // If there are no items above, we choose the target path itself as anchor. // todo: we should include even whitespace blocks as anchor candidates let anchor = container.children().next().or_else(|| Some(anchor)); let add_after_anchor = anchor .clone() .and_then(ast::Attr::cast) .map(|attr| attr.kind() == ast::AttrKind::Inner) .unwrap_or(false); ImportAction::add_new_use(anchor, add_after_anchor) } } } fn make_assist(action: &ImportAction, target: &[SmolStr], edit: &mut TextEditBuilder) { match action { ImportAction::AddNewUse { anchor, add_after_anchor } => { make_assist_add_new_use(anchor, *add_after_anchor, target, edit) } ImportAction::AddInTreeList { common_segments, tree_list, add_self } => { // We know that the fist n segments already exists in the use statement we want // to modify, so we want to add only the last target.len() - n segments. let segments_to_add = target.split_at(*common_segments).1; make_assist_add_in_tree_list(tree_list, segments_to_add, *add_self, edit) } ImportAction::AddNestedImport { common_segments, path_to_split, first_segment_to_split, add_self, } => { let segments_to_add = target.split_at(*common_segments).1; make_assist_add_nested_import( path_to_split, first_segment_to_split, segments_to_add, *add_self, edit, ) } _ => {} } } fn make_assist_add_new_use( anchor: &Option, after: bool, target: &[SmolStr], edit: &mut TextEditBuilder, ) { if let Some(anchor) = anchor { let indent = ra_fmt::leading_indent(anchor); let mut buf = String::new(); if after { buf.push_str("\n"); if let Some(spaces) = &indent { buf.push_str(spaces); } } buf.push_str("use "); fmt_segments_raw(target, &mut buf); buf.push_str(";"); if !after { buf.push_str("\n\n"); if let Some(spaces) = &indent { buf.push_str(&spaces); } } let position = if after { anchor.text_range().end() } else { anchor.text_range().start() }; edit.insert(position, buf); } } fn make_assist_add_in_tree_list( tree_list: &ast::UseTreeList, target: &[SmolStr], add_self: bool, edit: &mut TextEditBuilder, ) { let last = tree_list.use_trees().last(); if let Some(last) = last { let mut buf = String::new(); let comma = last.syntax().siblings(Direction::Next).find(|n| n.kind() == T![,]); let offset = if let Some(comma) = comma { comma.text_range().end() } else { buf.push_str(","); last.syntax().text_range().end() }; if add_self { buf.push_str(" self") } else { buf.push_str(" "); } fmt_segments_raw(target, &mut buf); edit.insert(offset, buf); } else { } } fn make_assist_add_nested_import( path: &ast::Path, first_segment_to_split: &Option, target: &[SmolStr], add_self: bool, edit: &mut TextEditBuilder, ) { let use_tree = path.syntax().ancestors().find_map(ast::UseTree::cast); if let Some(use_tree) = use_tree { let (start, add_colon_colon) = if let Some(first_segment_to_split) = first_segment_to_split { (first_segment_to_split.syntax().text_range().start(), false) } else { (use_tree.syntax().text_range().end(), true) }; let end = use_tree.syntax().text_range().end(); let mut buf = String::new(); if add_colon_colon { buf.push_str("::"); } buf.push_str("{"); if add_self { buf.push_str("self, "); } fmt_segments_raw(target, &mut buf); if !target.is_empty() { buf.push_str(", "); } edit.insert(start, buf); edit.insert(end, "}".to_string()); } }