//! FIXME: write short doc here use std::sync::Arc; use arrayvec::ArrayVec; use either::Either; use hir_def::{ adt::StructKind, adt::VariantData, builtin_type::BuiltinType, docs::Documentation, expr::{BindingAnnotation, Pat, PatId}, import_map, per_ns::PerNs, resolver::{HasResolver, Resolver}, type_ref::{Mutability, TypeRef}, AdtId, AssocContainerId, ConstId, DefWithBodyId, EnumId, FunctionId, GenericDefId, HasModule, ImplId, LocalEnumVariantId, LocalFieldId, LocalModuleId, Lookup, ModuleId, StaticId, StructId, TraitId, TypeAliasId, TypeParamId, UnionId, }; use hir_expand::{ diagnostics::DiagnosticSink, name::{name, AsName}, MacroDefId, MacroDefKind, }; use hir_ty::{ autoderef, display::{HirDisplayError, HirFormatter}, expr::ExprValidator, method_resolution, unsafe_validation::UnsafeValidator, ApplicationTy, Canonical, GenericPredicate, InEnvironment, Substs, TraitEnvironment, Ty, TyDefId, TypeCtor, }; use ra_db::{CrateId, CrateName, Edition, FileId}; use ra_prof::profile; use ra_syntax::ast::{self, AttrsOwner, NameOwner}; use rustc_hash::FxHashSet; use crate::{ db::{DefDatabase, HirDatabase}, has_source::HasSource, CallableDef, HirDisplay, InFile, Name, }; /// hir::Crate describes a single crate. It's the main interface with which /// a crate's dependencies interact. Mostly, it should be just a proxy for the /// root module. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Crate { pub(crate) id: CrateId, } #[derive(Debug)] pub struct CrateDependency { pub krate: Crate, pub name: Name, } impl Crate { pub fn dependencies(self, db: &dyn HirDatabase) -> Vec { db.crate_graph()[self.id] .dependencies .iter() .map(|dep| { let krate = Crate { id: dep.crate_id }; let name = dep.as_name(); CrateDependency { krate, name } }) .collect() } // FIXME: add `transitive_reverse_dependencies`. pub fn reverse_dependencies(self, db: &dyn HirDatabase) -> Vec { let crate_graph = db.crate_graph(); crate_graph .iter() .filter(|&krate| { crate_graph[krate].dependencies.iter().any(|it| it.crate_id == self.id) }) .map(|id| Crate { id }) .collect() } pub fn root_module(self, db: &dyn HirDatabase) -> Option { let module_id = db.crate_def_map(self.id).root; Some(Module::new(self, module_id)) } pub fn root_file(self, db: &dyn HirDatabase) -> FileId { db.crate_graph()[self.id].root_file_id } pub fn edition(self, db: &dyn HirDatabase) -> Edition { db.crate_graph()[self.id].edition } pub fn display_name(self, db: &dyn HirDatabase) -> Option { db.crate_graph()[self.id].display_name.as_ref().cloned() } pub fn query_external_importables( self, db: &dyn DefDatabase, query: &str, ) -> impl Iterator> { import_map::search_dependencies( db, self.into(), import_map::Query::new(query).anchor_end().case_sensitive().limit(40), ) .into_iter() .map(|item| match item { ItemInNs::Types(mod_id) | ItemInNs::Values(mod_id) => Either::Left(mod_id.into()), ItemInNs::Macros(mac_id) => Either::Right(mac_id.into()), }) } pub fn all(db: &dyn HirDatabase) -> Vec { db.crate_graph().iter().map(|id| Crate { id }).collect() } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Module { pub(crate) id: ModuleId, } /// The defs which can be visible in the module. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum ModuleDef { Module(Module), Function(Function), Adt(Adt), // Can't be directly declared, but can be imported. EnumVariant(EnumVariant), Const(Const), Static(Static), Trait(Trait), TypeAlias(TypeAlias), BuiltinType(BuiltinType), } impl_froms!( ModuleDef: Module, Function, Adt(Struct, Enum, Union), EnumVariant, Const, Static, Trait, TypeAlias, BuiltinType ); impl ModuleDef { pub fn module(self, db: &dyn HirDatabase) -> Option { match self { ModuleDef::Module(it) => it.parent(db), ModuleDef::Function(it) => Some(it.module(db)), ModuleDef::Adt(it) => Some(it.module(db)), ModuleDef::EnumVariant(it) => Some(it.module(db)), ModuleDef::Const(it) => Some(it.module(db)), ModuleDef::Static(it) => Some(it.module(db)), ModuleDef::Trait(it) => Some(it.module(db)), ModuleDef::TypeAlias(it) => Some(it.module(db)), ModuleDef::BuiltinType(_) => None, } } pub fn definition_visibility(&self, db: &dyn HirDatabase) -> Option { let module = match self { ModuleDef::Module(it) => it.parent(db)?, ModuleDef::Function(it) => return Some(it.visibility(db)), ModuleDef::Adt(it) => it.module(db), ModuleDef::EnumVariant(it) => { let parent = it.parent_enum(db); let module = it.module(db); return module.visibility_of(db, &ModuleDef::Adt(Adt::Enum(parent))); } ModuleDef::Const(it) => return Some(it.visibility(db)), ModuleDef::Static(it) => it.module(db), ModuleDef::Trait(it) => it.module(db), ModuleDef::TypeAlias(it) => return Some(it.visibility(db)), ModuleDef::BuiltinType(_) => return None, }; module.visibility_of(db, self) } pub fn name(&self, db: &dyn HirDatabase) -> Option { match self { ModuleDef::Module(m) => m.name(db), ModuleDef::Function(m) => Some(m.name(db)), ModuleDef::Adt(m) => Some(m.name(db)), ModuleDef::EnumVariant(m) => Some(m.name(db)), ModuleDef::Const(m) => m.name(db), ModuleDef::Static(m) => m.name(db), ModuleDef::Trait(m) => Some(m.name(db)), ModuleDef::TypeAlias(m) => Some(m.name(db)), ModuleDef::BuiltinType(m) => Some(m.as_name()), } } pub fn resolver(&self, db: &D) -> Option { Some(match self { ModuleDef::Module(m) => Into::::into(m.clone()).resolver(db), ModuleDef::Function(f) => Into::::into(f.clone()).resolver(db), ModuleDef::Adt(adt) => Into::::into(adt.clone()).resolver(db), ModuleDef::EnumVariant(ev) => { Into::::into(Into::::into(ev.clone())).resolver(db) } ModuleDef::Const(c) => { Into::::into(Into::::into(c.clone())).resolver(db) } ModuleDef::Static(s) => Into::::into(s.clone()).resolver(db), ModuleDef::Trait(t) => Into::::into(t.clone()).resolver(db), ModuleDef::TypeAlias(t) => Into::::into(t.module(db)).resolver(db), // FIXME: This should be a resolver relative to `std/core` ModuleDef::BuiltinType(_t) => None?, }) } } pub use hir_def::{ attr::Attrs, item_scope::ItemInNs, item_tree::ItemTreeNode, visibility::Visibility, AssocItemId, AssocItemLoc, }; impl Module { pub(crate) fn new(krate: Crate, crate_module_id: LocalModuleId) -> Module { Module { id: ModuleId { krate: krate.id, local_id: crate_module_id } } } /// Name of this module. pub fn name(self, db: &dyn HirDatabase) -> Option { let def_map = db.crate_def_map(self.id.krate); let parent = def_map[self.id.local_id].parent?; def_map[parent].children.iter().find_map(|(name, module_id)| { if *module_id == self.id.local_id { Some(name.clone()) } else { None } }) } /// Returns the crate this module is part of. pub fn krate(self) -> Crate { Crate { id: self.id.krate } } /// Topmost parent of this module. Every module has a `crate_root`, but some /// might be missing `krate`. This can happen if a module's file is not included /// in the module tree of any target in `Cargo.toml`. pub fn crate_root(self, db: &dyn HirDatabase) -> Module { let def_map = db.crate_def_map(self.id.krate); self.with_module_id(def_map.root) } /// Iterates over all child modules. pub fn children(self, db: &dyn HirDatabase) -> impl Iterator { let def_map = db.crate_def_map(self.id.krate); let children = def_map[self.id.local_id] .children .iter() .map(|(_, module_id)| self.with_module_id(*module_id)) .collect::>(); children.into_iter() } /// Finds a parent module. pub fn parent(self, db: &dyn HirDatabase) -> Option { let def_map = db.crate_def_map(self.id.krate); let parent_id = def_map[self.id.local_id].parent?; Some(self.with_module_id(parent_id)) } pub fn path_to_root(self, db: &dyn HirDatabase) -> Vec { let mut res = vec![self]; let mut curr = self; while let Some(next) = curr.parent(db) { res.push(next); curr = next } res } /// Returns a `ModuleScope`: a set of items, visible in this module. pub fn scope( self, db: &dyn HirDatabase, visible_from: Option, ) -> Vec<(Name, ScopeDef)> { db.crate_def_map(self.id.krate)[self.id.local_id] .scope .entries() .filter_map(|(name, def)| { if let Some(m) = visible_from { let filtered = def.filter_visibility(|vis| vis.is_visible_from(db.upcast(), m.id)); if filtered.is_none() && !def.is_none() { None } else { Some((name, filtered)) } } else { Some((name, def)) } }) .flat_map(|(name, def)| { ScopeDef::all_items(def).into_iter().map(move |item| (name.clone(), item)) }) .collect() } pub fn visibility_of(self, db: &dyn HirDatabase, def: &ModuleDef) -> Option { db.crate_def_map(self.id.krate)[self.id.local_id].scope.visibility_of(def.clone().into()) } pub fn diagnostics(self, db: &dyn HirDatabase, sink: &mut DiagnosticSink) { let _p = profile("Module::diagnostics"); let crate_def_map = db.crate_def_map(self.id.krate); crate_def_map.add_diagnostics(db.upcast(), self.id.local_id, sink); for decl in self.declarations(db) { match decl { crate::ModuleDef::Function(f) => f.diagnostics(db, sink), crate::ModuleDef::Module(m) => { // Only add diagnostics from inline modules if crate_def_map[m.id.local_id].origin.is_inline() { m.diagnostics(db, sink) } } _ => (), } } for impl_def in self.impl_defs(db) { for item in impl_def.items(db) { if let AssocItem::Function(f) = item { f.diagnostics(db, sink); } } } } pub fn declarations(self, db: &dyn HirDatabase) -> Vec { let def_map = db.crate_def_map(self.id.krate); def_map[self.id.local_id].scope.declarations().map(ModuleDef::from).collect() } pub fn impl_defs(self, db: &dyn HirDatabase) -> Vec { let def_map = db.crate_def_map(self.id.krate); def_map[self.id.local_id].scope.impls().map(ImplDef::from).collect() } pub(crate) fn with_module_id(self, module_id: LocalModuleId) -> Module { Module::new(self.krate(), module_id) } /// Finds a path that can be used to refer to the given item from within /// this module, if possible. pub fn find_use_path( self, db: &dyn DefDatabase, item: impl Into, ) -> Option { hir_def::find_path::find_path(db, item.into(), self.into()) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Field { pub(crate) parent: VariantDef, pub(crate) id: LocalFieldId, } #[derive(Debug, PartialEq, Eq)] pub enum FieldSource { Named(ast::RecordFieldDef), Pos(ast::TupleFieldDef), } impl Field { pub fn name(&self, db: &dyn HirDatabase) -> Name { self.parent.variant_data(db).fields()[self.id].name.clone() } /// Returns the type as in the signature of the struct (i.e., with /// placeholder types for type parameters). This is good for showing /// signature help, but not so good to actually get the type of the field /// when you actually have a variable of the struct. pub fn signature_ty(&self, db: &dyn HirDatabase) -> Type { let var_id = self.parent.into(); let generic_def_id: GenericDefId = match self.parent { VariantDef::Struct(it) => it.id.into(), VariantDef::Union(it) => it.id.into(), VariantDef::EnumVariant(it) => it.parent.id.into(), }; let substs = Substs::type_params(db, generic_def_id); let ty = db.field_types(var_id)[self.id].clone().subst(&substs); Type::new(db, self.parent.module(db).id.krate, var_id, ty) } pub fn parent_def(&self, _db: &dyn HirDatabase) -> VariantDef { self.parent } } impl HasVisibility for Field { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let variant_data = self.parent.variant_data(db); let visibility = &variant_data.fields()[self.id].visibility; let parent_id: hir_def::VariantId = self.parent.into(); visibility.resolve(db.upcast(), &parent_id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Struct { pub(crate) id: StructId, } impl Struct { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container.module(db.upcast()) } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.struct_data(self.id).name.clone() } pub fn fields(self, db: &dyn HirDatabase) -> Vec { db.struct_data(self.id) .variant_data .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).container.module(db.upcast()).krate, self.id) } fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.struct_data(self.id).variant_data.clone() } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Union { pub(crate) id: UnionId, } impl Union { pub fn name(self, db: &dyn HirDatabase) -> Name { db.union_data(self.id).name.clone() } pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container.module(db.upcast()) } } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).container.module(db.upcast()).krate, self.id) } pub fn fields(self, db: &dyn HirDatabase) -> Vec { db.union_data(self.id) .variant_data .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.union_data(self.id).variant_data.clone() } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Enum { pub(crate) id: EnumId, } impl Enum { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container.module(db.upcast()) } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.enum_data(self.id).name.clone() } pub fn variants(self, db: &dyn HirDatabase) -> Vec { db.enum_data(self.id) .variants .iter() .map(|(id, _)| EnumVariant { parent: self, id }) .collect() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).container.module(db.upcast()).krate, self.id) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct EnumVariant { pub(crate) parent: Enum, pub(crate) id: LocalEnumVariantId, } impl EnumVariant { pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent.module(db) } pub fn parent_enum(self, _db: &dyn HirDatabase) -> Enum { self.parent } pub fn name(self, db: &dyn HirDatabase) -> Name { db.enum_data(self.parent.id).variants[self.id].name.clone() } pub fn fields(self, db: &dyn HirDatabase) -> Vec { self.variant_data(db) .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } pub fn kind(self, db: &dyn HirDatabase) -> StructKind { self.variant_data(db).kind() } pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.enum_data(self.parent.id).variants[self.id].variant_data.clone() } } /// A Data Type #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum Adt { Struct(Struct), Union(Union), Enum(Enum), } impl_froms!(Adt: Struct, Union, Enum); impl Adt { pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool { let subst = db.generic_defaults(self.into()); subst.iter().any(|ty| &ty.value == &Ty::Unknown) } /// Turns this ADT into a type. Any type parameters of the ADT will be /// turned into unknown types, which is good for e.g. finding the most /// general set of completions, but will not look very nice when printed. pub fn ty(self, db: &dyn HirDatabase) -> Type { let id = AdtId::from(self); Type::from_def(db, id.module(db.upcast()).krate, id) } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { Adt::Struct(s) => s.module(db), Adt::Union(s) => s.module(db), Adt::Enum(e) => e.module(db), } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Name { match self { Adt::Struct(s) => s.name(db), Adt::Union(u) => u.name(db), Adt::Enum(e) => e.name(db), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum VariantDef { Struct(Struct), Union(Union), EnumVariant(EnumVariant), } impl_froms!(VariantDef: Struct, Union, EnumVariant); impl VariantDef { pub fn fields(self, db: &dyn HirDatabase) -> Vec { match self { VariantDef::Struct(it) => it.fields(db), VariantDef::Union(it) => it.fields(db), VariantDef::EnumVariant(it) => it.fields(db), } } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { VariantDef::Struct(it) => it.module(db), VariantDef::Union(it) => it.module(db), VariantDef::EnumVariant(it) => it.module(db), } } pub fn name(&self, db: &dyn HirDatabase) -> Name { match self { VariantDef::Struct(s) => s.name(db), VariantDef::Union(u) => u.name(db), VariantDef::EnumVariant(e) => e.name(db), } } pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc { match self { VariantDef::Struct(it) => it.variant_data(db), VariantDef::Union(it) => it.variant_data(db), VariantDef::EnumVariant(it) => it.variant_data(db), } } } /// The defs which have a body. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum DefWithBody { Function(Function), Static(Static), Const(Const), } impl_froms!(DefWithBody: Function, Const, Static); impl DefWithBody { pub fn module(self, db: &dyn HirDatabase) -> Module { match self { DefWithBody::Const(c) => c.module(db), DefWithBody::Function(f) => f.module(db), DefWithBody::Static(s) => s.module(db), } } pub fn name(self, db: &dyn HirDatabase) -> Option { match self { DefWithBody::Function(f) => Some(f.name(db)), DefWithBody::Static(s) => s.name(db), DefWithBody::Const(c) => c.name(db), } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Function { pub(crate) id: FunctionId, } impl Function { pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.lookup(db.upcast()).module(db.upcast()).into() } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.function_data(self.id).name.clone() } pub fn has_self_param(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).has_self_param } pub fn params(self, db: &dyn HirDatabase) -> Vec { db.function_data(self.id).params.clone() } pub fn is_unsafe(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).is_unsafe } pub fn diagnostics(self, db: &dyn HirDatabase, sink: &mut DiagnosticSink) { let _p = profile("Function::diagnostics"); let infer = db.infer(self.id.into()); infer.add_diagnostics(db, self.id, sink); let mut validator = ExprValidator::new(self.id, infer.clone(), sink); validator.validate_body(db); let mut validator = UnsafeValidator::new(self.id, infer, sink); validator.validate_body(db); } } impl HasVisibility for Function { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.function_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Const { pub(crate) id: ConstId, } impl Const { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Option { db.const_data(self.id).name.clone() } } impl HasVisibility for Const { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.const_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Static { pub(crate) id: StaticId, } impl Static { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn name(self, db: &dyn HirDatabase) -> Option { db.static_data(self.id).name.clone() } pub fn is_mut(self, db: &dyn HirDatabase) -> bool { db.static_data(self.id).mutable } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Trait { pub(crate) id: TraitId, } impl Trait { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container.module(db.upcast()) } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.trait_data(self.id).name.clone() } pub fn items(self, db: &dyn HirDatabase) -> Vec { db.trait_data(self.id).items.iter().map(|(_name, it)| (*it).into()).collect() } pub fn is_auto(self, db: &dyn HirDatabase) -> bool { db.trait_data(self.id).auto } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct TypeAlias { pub(crate) id: TypeAliasId, } impl TypeAlias { pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool { let subst = db.generic_defaults(self.id.into()); subst.iter().any(|ty| &ty.value == &Ty::Unknown) } pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn krate(self, db: &dyn HirDatabase) -> Option { Some(self.module(db).krate()) } pub fn type_ref(self, db: &dyn HirDatabase) -> Option { db.type_alias_data(self.id).type_ref.clone() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).module(db.upcast()).krate, self.id) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.type_alias_data(self.id).name.clone() } } impl HasVisibility for TypeAlias { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.type_alias_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct MacroDef { pub(crate) id: MacroDefId, } impl MacroDef { /// FIXME: right now, this just returns the root module of the crate that /// defines this macro. The reasons for this is that macros are expanded /// early, in `ra_hir_expand`, where modules simply do not exist yet. pub fn module(self, db: &dyn HirDatabase) -> Option { let krate = self.id.krate?; let module_id = db.crate_def_map(krate).root; Some(Module::new(Crate { id: krate }, module_id)) } /// XXX: this parses the file pub fn name(self, db: &dyn HirDatabase) -> Option { self.source(db).value.name().map(|it| it.as_name()) } /// Indicate it is a proc-macro pub fn is_proc_macro(&self) -> bool { matches!(self.id.kind, MacroDefKind::CustomDerive(_)) } /// Indicate it is a derive macro pub fn is_derive_macro(&self) -> bool { matches!(self.id.kind, MacroDefKind::CustomDerive(_) | MacroDefKind::BuiltInDerive(_)) } } /// Invariant: `inner.as_assoc_item(db).is_some()` /// We do not actively enforce this invariant. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum AssocItem { Function(Function), Const(Const), TypeAlias(TypeAlias), } pub enum AssocItemContainer { Trait(Trait), ImplDef(ImplDef), } pub trait AsAssocItem { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option; } impl AsAssocItem for Function { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::Function, self.id) } } impl AsAssocItem for Const { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::Const, self.id) } } impl AsAssocItem for TypeAlias { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::TypeAlias, self.id) } } fn as_assoc_item(db: &dyn HirDatabase, ctor: CTOR, id: ID) -> Option where ID: Lookup>, DEF: From, CTOR: FnOnce(DEF) -> AssocItem, AST: ItemTreeNode, { match id.lookup(db.upcast()).container { AssocContainerId::TraitId(_) | AssocContainerId::ImplId(_) => Some(ctor(DEF::from(id))), AssocContainerId::ContainerId(_) => None, } } impl AssocItem { pub fn module(self, db: &dyn HirDatabase) -> Module { match self { AssocItem::Function(f) => f.module(db), AssocItem::Const(c) => c.module(db), AssocItem::TypeAlias(t) => t.module(db), } } pub fn container(self, db: &dyn HirDatabase) -> AssocItemContainer { let container = match self { AssocItem::Function(it) => it.id.lookup(db.upcast()).container, AssocItem::Const(it) => it.id.lookup(db.upcast()).container, AssocItem::TypeAlias(it) => it.id.lookup(db.upcast()).container, }; match container { AssocContainerId::TraitId(id) => AssocItemContainer::Trait(id.into()), AssocContainerId::ImplId(id) => AssocItemContainer::ImplDef(id.into()), AssocContainerId::ContainerId(_) => panic!("invalid AssocItem"), } } } impl HasVisibility for AssocItem { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { match self { AssocItem::Function(f) => f.visibility(db), AssocItem::Const(c) => c.visibility(db), AssocItem::TypeAlias(t) => t.visibility(db), } } } #[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)] pub enum GenericDef { Function(Function), Adt(Adt), Trait(Trait), TypeAlias(TypeAlias), ImplDef(ImplDef), // enum variants cannot have generics themselves, but their parent enums // can, and this makes some code easier to write EnumVariant(EnumVariant), // consts can have type parameters from their parents (i.e. associated consts of traits) Const(Const), } impl_froms!( GenericDef: Function, Adt(Struct, Enum, Union), Trait, TypeAlias, ImplDef, EnumVariant, Const ); impl GenericDef { pub fn params(self, db: &dyn HirDatabase) -> Vec { let generics: Arc = db.generic_params(self.into()); generics .types .iter() .map(|(local_id, _)| TypeParam { id: TypeParamId { parent: self.into(), local_id } }) .collect() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct Local { pub(crate) parent: DefWithBodyId, pub(crate) pat_id: PatId, } impl Local { // FIXME: why is this an option? It shouldn't be? pub fn name(self, db: &dyn HirDatabase) -> Option { let body = db.body(self.parent.into()); match &body[self.pat_id] { Pat::Bind { name, .. } => Some(name.clone()), _ => None, } } pub fn is_self(self, db: &dyn HirDatabase) -> bool { self.name(db) == Some(name![self]) } pub fn is_mut(self, db: &dyn HirDatabase) -> bool { let body = db.body(self.parent.into()); match &body[self.pat_id] { Pat::Bind { mode, .. } => match mode { BindingAnnotation::Mutable | BindingAnnotation::RefMut => true, _ => false, }, _ => false, } } pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody { self.parent.into() } pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent(db).module(db) } pub fn ty(self, db: &dyn HirDatabase) -> Type { let def = DefWithBodyId::from(self.parent); let infer = db.infer(def); let ty = infer[self.pat_id].clone(); let krate = def.module(db.upcast()).krate; Type::new(db, krate, def, ty) } pub fn source(self, db: &dyn HirDatabase) -> InFile> { let (_body, source_map) = db.body_with_source_map(self.parent.into()); let src = source_map.pat_syntax(self.pat_id).unwrap(); // Hmm... let root = src.file_syntax(db.upcast()); src.map(|ast| { ast.map_left(|it| it.cast().unwrap().to_node(&root)).map_right(|it| it.to_node(&root)) }) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct TypeParam { pub(crate) id: TypeParamId, } impl TypeParam { pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent); params.types[self.id.local_id].name.clone().unwrap_or_else(Name::missing) } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent.module(db.upcast()).into() } pub fn ty(self, db: &dyn HirDatabase) -> Type { let resolver = self.id.parent.resolver(db.upcast()); let environment = TraitEnvironment::lower(db, &resolver); let ty = Ty::Placeholder(self.id); Type { krate: self.id.parent.module(db.upcast()).krate, ty: InEnvironment { value: ty, environment }, } } pub fn default(self, db: &dyn HirDatabase) -> Option { let params = db.generic_defaults(self.id.parent); let local_idx = hir_ty::param_idx(db, self.id)?; let resolver = self.id.parent.resolver(db.upcast()); let environment = TraitEnvironment::lower(db, &resolver); let ty = params.get(local_idx)?.clone(); let subst = Substs::type_params(db, self.id.parent); let ty = ty.subst(&subst.prefix(local_idx)); Some(Type { krate: self.id.parent.module(db.upcast()).krate, ty: InEnvironment { value: ty, environment }, }) } } // FIXME: rename from `ImplDef` to `Impl` #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct ImplDef { pub(crate) id: ImplId, } impl ImplDef { pub fn all_in_crate(db: &dyn HirDatabase, krate: Crate) -> Vec { let impls = db.impls_in_crate(krate.id); impls.all_impls().map(Self::from).collect() } pub fn for_trait(db: &dyn HirDatabase, krate: Crate, trait_: Trait) -> Vec { let impls = db.impls_in_crate(krate.id); impls.lookup_impl_defs_for_trait(trait_.id).map(Self::from).collect() } pub fn target_trait(self, db: &dyn HirDatabase) -> Option { db.impl_data(self.id).target_trait.clone() } pub fn target_type(self, db: &dyn HirDatabase) -> TypeRef { db.impl_data(self.id).target_type.clone() } pub fn target_ty(self, db: &dyn HirDatabase) -> Type { let impl_data = db.impl_data(self.id); let resolver = self.id.resolver(db.upcast()); let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let environment = TraitEnvironment::lower(db, &resolver); let ty = Ty::from_hir(&ctx, &impl_data.target_type); Type { krate: self.id.lookup(db.upcast()).container.module(db.upcast()).krate, ty: InEnvironment { value: ty, environment }, } } pub fn items(self, db: &dyn HirDatabase) -> Vec { db.impl_data(self.id).items.iter().map(|it| (*it).into()).collect() } pub fn is_negative(self, db: &dyn HirDatabase) -> bool { db.impl_data(self.id).is_negative } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.lookup(db.upcast()).container.module(db.upcast()).into() } pub fn krate(self, db: &dyn HirDatabase) -> Crate { Crate { id: self.module(db).id.krate } } pub fn is_builtin_derive(self, db: &dyn HirDatabase) -> Option> { let src = self.source(db); let item = src.file_id.is_builtin_derive(db.upcast())?; let hygenic = hir_expand::hygiene::Hygiene::new(db.upcast(), item.file_id); let attr = item .value .attrs() .filter_map(|it| { let path = hir_def::path::ModPath::from_src(it.path()?, &hygenic)?; if path.as_ident()?.to_string() == "derive" { Some(it) } else { None } }) .last()?; Some(item.with_value(attr)) } } #[derive(Clone, PartialEq, Eq, Debug)] pub struct Type { krate: CrateId, ty: InEnvironment, } impl Type { pub(crate) fn new_with_resolver( db: &dyn HirDatabase, resolver: &Resolver, ty: Ty, ) -> Option { let krate = resolver.krate()?; Some(Type::new_with_resolver_inner(db, krate, resolver, ty)) } pub(crate) fn new_with_resolver_inner( db: &dyn HirDatabase, krate: CrateId, resolver: &Resolver, ty: Ty, ) -> Type { let environment = TraitEnvironment::lower(db, &resolver); Type { krate, ty: InEnvironment { value: ty, environment } } } fn new(db: &dyn HirDatabase, krate: CrateId, lexical_env: impl HasResolver, ty: Ty) -> Type { let resolver = lexical_env.resolver(db.upcast()); let environment = TraitEnvironment::lower(db, &resolver); Type { krate, ty: InEnvironment { value: ty, environment } } } fn from_def( db: &dyn HirDatabase, krate: CrateId, def: impl HasResolver + Into + Into, ) -> Type { let substs = Substs::build_for_def(db, def).fill_with_unknown().build(); let ty = db.ty(def.into()).subst(&substs); Type::new(db, krate, def, ty) } pub fn is_bool(&self) -> bool { matches!(self.ty.value, Ty::Apply(ApplicationTy { ctor: TypeCtor::Bool, .. })) } pub fn is_mutable_reference(&self) -> bool { matches!( self.ty.value, Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(Mutability::Mut), .. }) ) } pub fn is_unknown(&self) -> bool { matches!(self.ty.value, Ty::Unknown) } /// Checks that particular type `ty` implements `std::future::Future`. /// This function is used in `.await` syntax completion. pub fn impls_future(&self, db: &dyn HirDatabase) -> bool { let krate = self.krate; let std_future_trait = db.lang_item(krate, "future_trait".into()).and_then(|it| it.as_trait()); let std_future_trait = match std_future_trait { Some(it) => it, None => return false, }; let canonical_ty = Canonical { value: self.ty.value.clone(), num_vars: 0 }; method_resolution::implements_trait( &canonical_ty, db, self.ty.environment.clone(), krate, std_future_trait, ) } pub fn impls_trait(&self, db: &dyn HirDatabase, trait_: Trait, args: &[Type]) -> bool { let trait_ref = hir_ty::TraitRef { trait_: trait_.id, substs: Substs::build_for_def(db, trait_.id) .push(self.ty.value.clone()) .fill(args.iter().map(|t| t.ty.value.clone())) .build(), }; let goal = Canonical { value: hir_ty::InEnvironment::new( self.ty.environment.clone(), hir_ty::Obligation::Trait(trait_ref), ), num_vars: 0, }; db.trait_solve(self.krate, goal).is_some() } // FIXME: this method is broken, as it doesn't take closures into account. pub fn as_callable(&self) -> Option { Some(self.ty.value.as_callable()?.0) } pub fn is_closure(&self) -> bool { matches!(&self.ty.value, Ty::Apply(ApplicationTy { ctor: TypeCtor::Closure { .. }, .. })) } pub fn is_fn(&self) -> bool { matches!(&self.ty.value, Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(..), .. }) | Ty::Apply(ApplicationTy { ctor: TypeCtor::FnPtr { .. }, .. }) ) } pub fn is_raw_ptr(&self) -> bool { matches!(&self.ty.value, Ty::Apply(ApplicationTy { ctor: TypeCtor::RawPtr(..), .. })) } pub fn contains_unknown(&self) -> bool { return go(&self.ty.value); fn go(ty: &Ty) -> bool { match ty { Ty::Unknown => true, Ty::Apply(a_ty) => a_ty.parameters.iter().any(go), _ => false, } } } pub fn fields(&self, db: &dyn HirDatabase) -> Vec<(Field, Type)> { if let Ty::Apply(a_ty) = &self.ty.value { let variant_id = match a_ty.ctor { TypeCtor::Adt(AdtId::StructId(s)) => s.into(), TypeCtor::Adt(AdtId::UnionId(u)) => u.into(), _ => return Vec::new(), }; return db .field_types(variant_id) .iter() .map(|(local_id, ty)| { let def = Field { parent: variant_id.into(), id: local_id }; let ty = ty.clone().subst(&a_ty.parameters); (def, self.derived(ty)) }) .collect(); }; Vec::new() } pub fn tuple_fields(&self, _db: &dyn HirDatabase) -> Vec { let mut res = Vec::new(); if let Ty::Apply(a_ty) = &self.ty.value { if let TypeCtor::Tuple { .. } = a_ty.ctor { for ty in a_ty.parameters.iter() { let ty = ty.clone(); res.push(self.derived(ty)); } } }; res } pub fn autoderef<'a>(&'a self, db: &'a dyn HirDatabase) -> impl Iterator + 'a { // There should be no inference vars in types passed here // FIXME check that? let canonical = Canonical { value: self.ty.value.clone(), num_vars: 0 }; let environment = self.ty.environment.clone(); let ty = InEnvironment { value: canonical, environment }; autoderef(db, Some(self.krate), ty) .map(|canonical| canonical.value) .map(move |ty| self.derived(ty)) } // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplDefs`. pub fn iterate_assoc_items( self, db: &dyn HirDatabase, krate: Crate, mut callback: impl FnMut(AssocItem) -> Option, ) -> Option { for krate in self.ty.value.def_crates(db, krate.id)? { let impls = db.impls_in_crate(krate); for impl_def in impls.lookup_impl_defs(&self.ty.value) { for &item in db.impl_data(impl_def).items.iter() { if let Some(result) = callback(item.into()) { return Some(result); } } } } None } pub fn iterate_method_candidates( &self, db: &dyn HirDatabase, krate: Crate, traits_in_scope: &FxHashSet, name: Option<&Name>, mut callback: impl FnMut(&Ty, Function) -> Option, ) -> Option { // There should be no inference vars in types passed here // FIXME check that? // FIXME replace Unknown by bound vars here let canonical = Canonical { value: self.ty.value.clone(), num_vars: 0 }; let env = self.ty.environment.clone(); let krate = krate.id; method_resolution::iterate_method_candidates( &canonical, db, env, krate, traits_in_scope, name, method_resolution::LookupMode::MethodCall, |ty, it| match it { AssocItemId::FunctionId(f) => callback(ty, f.into()), _ => None, }, ) } pub fn iterate_path_candidates( &self, db: &dyn HirDatabase, krate: Crate, traits_in_scope: &FxHashSet, name: Option<&Name>, mut callback: impl FnMut(&Ty, AssocItem) -> Option, ) -> Option { // There should be no inference vars in types passed here // FIXME check that? // FIXME replace Unknown by bound vars here let canonical = Canonical { value: self.ty.value.clone(), num_vars: 0 }; let env = self.ty.environment.clone(); let krate = krate.id; method_resolution::iterate_method_candidates( &canonical, db, env, krate, traits_in_scope, name, method_resolution::LookupMode::Path, |ty, it| callback(ty, it.into()), ) } pub fn as_adt(&self) -> Option { let (adt, _subst) = self.ty.value.as_adt()?; Some(adt.into()) } pub fn as_dyn_trait(&self) -> Option { self.ty.value.dyn_trait().map(Into::into) } pub fn as_impl_traits(&self, db: &dyn HirDatabase) -> Option> { self.ty.value.impl_trait_bounds(db).map(|it| { it.into_iter() .filter_map(|pred| match pred { hir_ty::GenericPredicate::Implemented(trait_ref) => { Some(Trait::from(trait_ref.trait_)) } _ => None, }) .collect() }) } pub fn as_associated_type_parent_trait(&self, db: &dyn HirDatabase) -> Option { self.ty.value.associated_type_parent_trait(db).map(Into::into) } // FIXME: provide required accessors such that it becomes implementable from outside. pub fn is_equal_for_find_impls(&self, other: &Type) -> bool { match (&self.ty.value, &other.ty.value) { (Ty::Apply(a_original_ty), Ty::Apply(ApplicationTy { ctor, parameters })) => match ctor { TypeCtor::Ref(..) => match parameters.as_single() { Ty::Apply(a_ty) => a_original_ty.ctor == a_ty.ctor, _ => false, }, _ => a_original_ty.ctor == *ctor, }, _ => false, } } fn derived(&self, ty: Ty) -> Type { Type { krate: self.krate, ty: InEnvironment { value: ty, environment: self.ty.environment.clone() }, } } pub fn walk(&self, db: &dyn HirDatabase, mut cb: impl FnMut(Type)) { // TypeWalk::walk for a Ty at first visits parameters and only after that the Ty itself. // We need a different order here. fn walk_substs( db: &dyn HirDatabase, type_: &Type, substs: &Substs, cb: &mut impl FnMut(Type), ) { for ty in substs.iter() { walk_type(db, &type_.derived(ty.clone()), cb); } } fn walk_bounds( db: &dyn HirDatabase, type_: &Type, bounds: &[GenericPredicate], cb: &mut impl FnMut(Type), ) { for pred in bounds { match pred { GenericPredicate::Implemented(trait_ref) => { cb(type_.clone()); walk_substs(db, type_, &trait_ref.substs, cb); } _ => (), } } } fn walk_type(db: &dyn HirDatabase, type_: &Type, cb: &mut impl FnMut(Type)) { let ty = type_.ty.value.strip_references(); match ty { Ty::Apply(ApplicationTy { ctor, parameters }) => { match ctor { TypeCtor::Adt(_) => { cb(type_.derived(ty.clone())); } TypeCtor::AssociatedType(_) => { if let Some(_) = ty.associated_type_parent_trait(db) { cb(type_.derived(ty.clone())); } } _ => (), } // adt params, tuples, etc... walk_substs(db, type_, parameters, cb); } Ty::Opaque(opaque_ty) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } walk_substs(db, type_, &opaque_ty.parameters, cb); } Ty::Placeholder(_) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } } Ty::Dyn(bounds) => { walk_bounds(db, &type_.derived(ty.clone()), bounds.as_ref(), cb); } _ => (), } } walk_type(db, self, &mut cb); } } impl HirDisplay for Type { fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> { self.ty.value.hir_fmt(f) } } /// For IDE only #[derive(Debug)] pub enum ScopeDef { ModuleDef(ModuleDef), MacroDef(MacroDef), GenericParam(TypeParam), ImplSelfType(ImplDef), AdtSelfType(Adt), Local(Local), Unknown, } impl ScopeDef { pub fn all_items(def: PerNs) -> ArrayVec<[Self; 3]> { let mut items = ArrayVec::new(); match (def.take_types(), def.take_values()) { (Some(m1), None) => items.push(ScopeDef::ModuleDef(m1.into())), (None, Some(m2)) => items.push(ScopeDef::ModuleDef(m2.into())), (Some(m1), Some(m2)) => { // Some items, like unit structs and enum variants, are // returned as both a type and a value. Here we want // to de-duplicate them. if m1 != m2 { items.push(ScopeDef::ModuleDef(m1.into())); items.push(ScopeDef::ModuleDef(m2.into())); } else { items.push(ScopeDef::ModuleDef(m1.into())); } } (None, None) => {} }; if let Some(macro_def_id) = def.take_macros() { items.push(ScopeDef::MacroDef(macro_def_id.into())); } if items.is_empty() { items.push(ScopeDef::Unknown); } items } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum AttrDef { Module(Module), Field(Field), Adt(Adt), Function(Function), EnumVariant(EnumVariant), Static(Static), Const(Const), Trait(Trait), TypeAlias(TypeAlias), MacroDef(MacroDef), } impl_froms!( AttrDef: Module, Field, Adt(Struct, Enum, Union), EnumVariant, Static, Const, Function, Trait, TypeAlias, MacroDef ); pub trait HasAttrs { fn attrs(self, db: &dyn HirDatabase) -> Attrs; } impl> HasAttrs for T { fn attrs(self, db: &dyn HirDatabase) -> Attrs { let def: AttrDef = self.into(); db.attrs(def.into()) } } pub trait Docs { fn docs(&self, db: &dyn HirDatabase) -> Option; } impl + Copy> Docs for T { fn docs(&self, db: &dyn HirDatabase) -> Option { let def: AttrDef = (*self).into(); db.documentation(def.into()) } } pub trait HasVisibility { fn visibility(&self, db: &dyn HirDatabase) -> Visibility; fn is_visible_from(&self, db: &dyn HirDatabase, module: Module) -> bool { let vis = self.visibility(db); vis.is_visible_from(db.upcast(), module.id) } }