use std::sync::Arc; use arrayvec::ArrayVec; use relative_path::RelativePathBuf; use ra_db::{FileId, SourceRoot, CrateId}; use ra_syntax::{ SyntaxNode, TreeArc, algo::generate, ast::{self, AstNode, NameOwner}, }; use ra_arena::{Arena, RawId, impl_arena_id}; use test_utils::tested_by; use crate::{ Name, AsName, HirDatabase, SourceItemId, HirFileId, Problem, SourceFileItems, ModuleSource, ids::SourceFileItemId, }; impl ModuleSource { pub(crate) fn new( db: &impl HirDatabase, file_id: HirFileId, decl_id: Option, ) -> ModuleSource { match decl_id { Some(item_id) => { let module = db.file_item(SourceItemId { file_id, item_id }); let module = ast::Module::cast(&*module).unwrap(); assert!(module.item_list().is_some(), "expected inline module"); ModuleSource::Module(module.to_owned()) } None => { let source_file = db.hir_parse(file_id); ModuleSource::SourceFile(source_file) } } } } #[derive(Clone, Hash, PartialEq, Eq, Debug)] pub struct Submodule { name: Name, is_declaration: bool, decl_id: SourceFileItemId, } impl Submodule { pub(crate) fn submodules_query( db: &impl HirDatabase, file_id: HirFileId, decl_id: Option, ) -> Arc> { db.check_canceled(); let file_items = db.file_items(file_id); let module_source = ModuleSource::new(db, file_id, decl_id); let submodules = match module_source { ModuleSource::SourceFile(source_file) => { collect_submodules(file_id, &file_items, &*source_file) } ModuleSource::Module(module) => { collect_submodules(file_id, &file_items, module.item_list().unwrap()) } }; return Arc::new(submodules); fn collect_submodules( file_id: HirFileId, file_items: &SourceFileItems, root: &impl ast::ModuleItemOwner, ) -> Vec { root.items() .filter_map(|item| match item.kind() { ast::ModuleItemKind::Module(m) => Some(m), _ => None, }) .filter_map(|module| { let name = module.name()?.as_name(); if !module.has_semi() && module.item_list().is_none() { tested_by!(name_res_works_for_broken_modules); return None; } let sub = Submodule { name, is_declaration: module.has_semi(), decl_id: file_items.id_of(file_id, module.syntax()), }; Some(sub) }) .collect() } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct ModuleId(RawId); impl_arena_id!(ModuleId); #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct LinkId(RawId); impl_arena_id!(LinkId); /// Physically, rust source is organized as a set of files, but logically it is /// organized as a tree of modules. Usually, a single file corresponds to a /// single module, but it is not neccessarily always the case. /// /// `ModuleTree` encapsulates the logic of transitioning from the fuzzy world of files /// (which can have multiple parents) to the precise world of modules (which /// always have one parent). #[derive(Default, Debug, PartialEq, Eq)] pub struct ModuleTree { mods: Arena, links: Arena, } #[derive(Debug, PartialEq, Eq, Hash)] pub struct ModuleData { file_id: HirFileId, /// Points to `ast::Module`, `None` for the whole file. decl_id: Option, parent: Option, children: Vec, } #[derive(Hash, Debug, PartialEq, Eq)] struct LinkData { source: SourceItemId, owner: ModuleId, name: Name, points_to: Vec, problem: Option, } impl ModuleTree { pub(crate) fn module_tree_query(db: &impl HirDatabase, crate_id: CrateId) -> Arc { db.check_canceled(); let mut res = ModuleTree::default(); res.init_crate(db, crate_id); Arc::new(res) } pub(crate) fn modules<'a>(&'a self) -> impl Iterator + 'a { self.mods.iter().map(|(id, _)| id) } pub(crate) fn find_module_by_source( &self, file_id: HirFileId, decl_id: Option, ) -> Option { let (res, _) = self .mods .iter() .find(|(_, m)| (m.file_id, m.decl_id) == (file_id, decl_id))?; Some(res) } fn init_crate(&mut self, db: &impl HirDatabase, crate_id: CrateId) { let crate_graph = db.crate_graph(); let file_id = crate_graph.crate_root(crate_id); let source_root_id = db.file_source_root(file_id); let source_root = db.source_root(source_root_id); self.init_subtree(db, &source_root, None, file_id.into(), None); } fn init_subtree( &mut self, db: &impl HirDatabase, source_root: &SourceRoot, parent: Option, file_id: HirFileId, decl_id: Option, ) -> ModuleId { let id = self.alloc_mod(ModuleData { file_id, decl_id, parent, children: Vec::new(), }); for sub in db.submodules(file_id, decl_id).iter() { let link = self.alloc_link(LinkData { source: SourceItemId { file_id, item_id: sub.decl_id, }, name: sub.name.clone(), owner: id, points_to: Vec::new(), problem: None, }); let (points_to, problem) = if sub.is_declaration { let (points_to, problem) = resolve_submodule(db, file_id, &sub.name); let points_to = points_to .into_iter() .map(|file_id| { self.init_subtree(db, source_root, Some(link), file_id.into(), None) }) .collect::>(); (points_to, problem) } else { let points_to = self.init_subtree(db, source_root, Some(link), file_id, Some(sub.decl_id)); (vec![points_to], None) }; self.links[link].points_to = points_to; self.links[link].problem = problem; } id } fn alloc_mod(&mut self, data: ModuleData) -> ModuleId { self.mods.alloc(data) } fn alloc_link(&mut self, data: LinkData) -> LinkId { let owner = data.owner; let id = self.links.alloc(data); self.mods[owner].children.push(id); id } } impl ModuleId { pub(crate) fn file_id(self, tree: &ModuleTree) -> HirFileId { tree.mods[self].file_id } pub(crate) fn decl_id(self, tree: &ModuleTree) -> Option { tree.mods[self].decl_id } pub(crate) fn parent_link(self, tree: &ModuleTree) -> Option { tree.mods[self].parent } pub(crate) fn parent(self, tree: &ModuleTree) -> Option { let link = self.parent_link(tree)?; Some(tree.links[link].owner) } pub(crate) fn crate_root(self, tree: &ModuleTree) -> ModuleId { generate(Some(self), move |it| it.parent(tree)) .last() .unwrap() } pub(crate) fn child(self, tree: &ModuleTree, name: &Name) -> Option { let link = tree.mods[self] .children .iter() .map(|&it| &tree.links[it]) .find(|it| it.name == *name)?; Some(*link.points_to.first()?) } pub(crate) fn children<'a>( self, tree: &'a ModuleTree, ) -> impl Iterator + 'a { tree.mods[self].children.iter().filter_map(move |&it| { let link = &tree.links[it]; let module = *link.points_to.first()?; Some((link.name.clone(), module)) }) } pub(crate) fn problems( self, tree: &ModuleTree, db: &impl HirDatabase, ) -> Vec<(TreeArc, Problem)> { tree.mods[self] .children .iter() .filter_map(|&link| { let p = tree.links[link].problem.clone()?; let s = link.source(tree, db); let s = s.name().unwrap().syntax().to_owned(); Some((s, p)) }) .collect() } } impl LinkId { pub(crate) fn owner(self, tree: &ModuleTree) -> ModuleId { tree.links[self].owner } pub(crate) fn name(self, tree: &ModuleTree) -> &Name { &tree.links[self].name } pub(crate) fn source(self, tree: &ModuleTree, db: &impl HirDatabase) -> TreeArc { let syntax_node = db.file_item(tree.links[self].source); ast::Module::cast(&syntax_node).unwrap().to_owned() } } fn resolve_submodule( db: &impl HirDatabase, file_id: HirFileId, name: &Name, ) -> (Vec, Option) { // FIXME: handle submodules of inline modules properly let file_id = file_id.original_file(db); let source_root_id = db.file_source_root(file_id); let path = db.file_relative_path(file_id); let root = RelativePathBuf::default(); let dir_path = path.parent().unwrap_or(&root); let mod_name = path.file_stem().unwrap_or("unknown"); let is_dir_owner = mod_name == "mod" || mod_name == "lib" || mod_name == "main"; let file_mod = dir_path.join(format!("{}.rs", name)); let dir_mod = dir_path.join(format!("{}/mod.rs", name)); let file_dir_mod = dir_path.join(format!("{}/{}.rs", mod_name, name)); let mut candidates = ArrayVec::<[_; 2]>::new(); if is_dir_owner { candidates.push(file_mod.clone()); candidates.push(dir_mod); } else { candidates.push(file_dir_mod.clone()); }; let sr = db.source_root(source_root_id); let points_to = candidates .into_iter() .filter_map(|path| sr.files.get(&path)) .map(|&it| it) .collect::>(); let problem = if points_to.is_empty() { Some(Problem::UnresolvedModule { candidate: if is_dir_owner { file_mod } else { file_dir_mod }, }) } else { None }; (points_to, problem) }