use std::sync::Arc; use rustc_hash::{FxHashMap, FxHashSet}; use arrayvec::ArrayVec; use relative_path::RelativePathBuf; use ra_db::{FileId, SourceRootId, Cancelable, SourceRoot}; use ra_syntax::{ algo::generate, ast::{self, AstNode, NameOwner}, SyntaxNode, }; use ra_arena::{Arena, RawId, impl_arena_id}; use crate::{Name, AsName, HirDatabase, SourceItemId, SourceFileItemId, HirFileId, Problem}; #[derive(Clone, Hash, PartialEq, Eq, Debug)] pub enum Submodule { Declaration(Name), Definition(Name, ModuleSource), } impl Submodule { pub(crate) fn submodules_query( db: &impl HirDatabase, source: ModuleSource, ) -> Cancelable>> { db.check_canceled()?; let file_id = source.file_id(); let submodules = match source.resolve(db) { ModuleSourceNode::SourceFile(it) => collect_submodules(db, file_id, it.borrowed()), ModuleSourceNode::Module(it) => it .borrowed() .item_list() .map(|it| collect_submodules(db, file_id, it)) .unwrap_or_else(Vec::new), }; return Ok(Arc::new(submodules)); fn collect_submodules<'a>( db: &impl HirDatabase, file_id: HirFileId, root: impl ast::ModuleItemOwner<'a>, ) -> Vec { modules(root) .map(|(name, m)| { if m.has_semi() { Submodule::Declaration(name) } else { let src = ModuleSource::new_inline(db, file_id, m); Submodule::Definition(name, src) } }) .collect() } } fn name(&self) -> &Name { match self { Submodule::Declaration(name) => name, Submodule::Definition(name, _) => name, } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct ModuleId(RawId); impl_arena_id!(ModuleId); #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct LinkId(RawId); impl_arena_id!(LinkId); /// Physically, rust source is organized as a set of files, but logically it is /// organized as a tree of modules. Usually, a single file corresponds to a /// single module, but it is not nessary the case. /// /// Module encapsulate the logic of transitioning from the fuzzy world of files /// (which can have multiple parents) to the precise world of modules (which /// always have one parent). #[derive(Default, Debug, PartialEq, Eq)] pub struct ModuleTree { mods: Arena, links: Arena, } #[derive(Debug, PartialEq, Eq, Hash)] pub struct ModuleData { source: ModuleSource, parent: Option, children: Vec, } #[derive(Hash, Debug, PartialEq, Eq)] struct LinkData { owner: ModuleId, name: Name, points_to: Vec, problem: Option, } impl ModuleTree { pub(crate) fn module_tree_query( db: &impl HirDatabase, source_root: SourceRootId, ) -> Cancelable> { db.check_canceled()?; let res = create_module_tree(db, source_root)?; Ok(Arc::new(res)) } pub(crate) fn modules<'a>(&'a self) -> impl Iterator + 'a { self.mods.iter().map(|(id, _)| id) } pub(crate) fn modules_with_sources<'a>( &'a self, ) -> impl Iterator + 'a { self.mods.iter().map(|(id, m)| (id, m.source)) } } /// `ModuleSource` is the syntax tree element that produced this module: /// either a file, or an inlinde module. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct ModuleSource(pub(crate) SourceItemId); /// An owned syntax node for a module. Unlike `ModuleSource`, /// this holds onto the AST for the whole file. pub(crate) enum ModuleSourceNode { SourceFile(ast::SourceFileNode), Module(ast::ModuleNode), } impl ModuleId { pub(crate) fn source(self, tree: &ModuleTree) -> ModuleSource { tree.mods[self].source } pub(crate) fn parent_link(self, tree: &ModuleTree) -> Option { tree.mods[self].parent } pub(crate) fn parent(self, tree: &ModuleTree) -> Option { let link = self.parent_link(tree)?; Some(tree.links[link].owner) } pub(crate) fn crate_root(self, tree: &ModuleTree) -> ModuleId { generate(Some(self), move |it| it.parent(tree)) .last() .unwrap() } pub(crate) fn child(self, tree: &ModuleTree, name: &Name) -> Option { let link = tree.mods[self] .children .iter() .map(|&it| &tree.links[it]) .find(|it| it.name == *name)?; Some(*link.points_to.first()?) } pub(crate) fn children<'a>( self, tree: &'a ModuleTree, ) -> impl Iterator + 'a { tree.mods[self].children.iter().filter_map(move |&it| { let link = &tree.links[it]; let module = *link.points_to.first()?; Some((link.name.clone(), module)) }) } pub(crate) fn problems( self, tree: &ModuleTree, db: &impl HirDatabase, ) -> Vec<(SyntaxNode, Problem)> { tree.mods[self] .children .iter() .filter_map(|&it| { let p = tree.links[it].problem.clone()?; let s = it.bind_source(tree, db); let s = s.borrowed().name().unwrap().syntax().owned(); Some((s, p)) }) .collect() } } impl LinkId { pub(crate) fn owner(self, tree: &ModuleTree) -> ModuleId { tree.links[self].owner } pub(crate) fn name(self, tree: &ModuleTree) -> &Name { &tree.links[self].name } pub(crate) fn bind_source<'a>( self, tree: &ModuleTree, db: &impl HirDatabase, ) -> ast::ModuleNode { let owner = self.owner(tree); match owner.source(tree).resolve(db) { ModuleSourceNode::SourceFile(root) => { let ast = modules(root.borrowed()) .find(|(name, _)| name == &tree.links[self].name) .unwrap() .1; ast.owned() } ModuleSourceNode::Module(it) => it, } } } impl ModuleSource { // precondition: item_id **must** point to module fn new(file_id: HirFileId, item_id: Option) -> ModuleSource { let source_item_id = SourceItemId { file_id, item_id }; ModuleSource(source_item_id) } pub(crate) fn new_file(file_id: HirFileId) -> ModuleSource { ModuleSource::new(file_id, None) } pub(crate) fn new_inline( db: &impl HirDatabase, file_id: HirFileId, m: ast::Module, ) -> ModuleSource { assert!(!m.has_semi()); let file_items = db.file_items(file_id); let item_id = file_items.id_of(file_id, m.syntax()); ModuleSource::new(file_id, Some(item_id)) } pub(crate) fn file_id(self) -> HirFileId { self.0.file_id } pub(crate) fn resolve(self, db: &impl HirDatabase) -> ModuleSourceNode { let syntax_node = db.file_item(self.0); let syntax_node = syntax_node.borrowed(); if let Some(file) = ast::SourceFile::cast(syntax_node) { return ModuleSourceNode::SourceFile(file.owned()); } let module = ast::Module::cast(syntax_node).unwrap(); ModuleSourceNode::Module(module.owned()) } } impl ModuleTree { fn push_mod(&mut self, data: ModuleData) -> ModuleId { self.mods.alloc(data) } fn push_link(&mut self, data: LinkData) -> LinkId { let owner = data.owner; let id = self.links.alloc(data); self.mods[owner].children.push(id); id } } fn modules<'a>( root: impl ast::ModuleItemOwner<'a>, ) -> impl Iterator)> { root.items() .filter_map(|item| match item { ast::ModuleItem::Module(m) => Some(m), _ => None, }) .filter_map(|module| { let name = module.name()?.as_name(); Some((name, module)) }) } fn create_module_tree<'a>( db: &impl HirDatabase, source_root: SourceRootId, ) -> Cancelable { let mut tree = ModuleTree::default(); let mut roots = FxHashMap::default(); let mut visited = FxHashSet::default(); let source_root = db.source_root(source_root); for &file_id in source_root.files.values() { let source = ModuleSource::new_file(file_id.into()); if visited.contains(&source) { continue; // TODO: use explicit crate_roots here } assert!(!roots.contains_key(&file_id)); let module_id = build_subtree( db, &source_root, &mut tree, &mut visited, &mut roots, None, source, )?; roots.insert(file_id, module_id); } Ok(tree) } fn build_subtree( db: &impl HirDatabase, source_root: &SourceRoot, tree: &mut ModuleTree, visited: &mut FxHashSet, roots: &mut FxHashMap, parent: Option, source: ModuleSource, ) -> Cancelable { visited.insert(source); let id = tree.push_mod(ModuleData { source, parent, children: Vec::new(), }); for sub in db.submodules(source)?.iter() { let link = tree.push_link(LinkData { name: sub.name().clone(), owner: id, points_to: Vec::new(), problem: None, }); let (points_to, problem) = match sub { Submodule::Declaration(name) => { let (points_to, problem) = resolve_submodule(db, source, &name); let points_to = points_to .into_iter() .map(|file_id| match roots.remove(&file_id) { Some(module_id) => { tree.mods[module_id].parent = Some(link); Ok(module_id) } None => build_subtree( db, source_root, tree, visited, roots, Some(link), ModuleSource::new_file(file_id.into()), ), }) .collect::>>()?; (points_to, problem) } Submodule::Definition(_name, submodule_source) => { let points_to = build_subtree( db, source_root, tree, visited, roots, Some(link), *submodule_source, )?; (vec![points_to], None) } }; tree.links[link].points_to = points_to; tree.links[link].problem = problem; } Ok(id) } fn resolve_submodule( db: &impl HirDatabase, source: ModuleSource, name: &Name, ) -> (Vec, Option) { // FIXME: handle submodules of inline modules properly let file_id = source.file_id().original_file(db); let source_root_id = db.file_source_root(file_id); let path = db.file_relative_path(file_id); let root = RelativePathBuf::default(); let dir_path = path.parent().unwrap_or(&root); let mod_name = path.file_stem().unwrap_or("unknown"); let is_dir_owner = mod_name == "mod" || mod_name == "lib" || mod_name == "main"; let file_mod = dir_path.join(format!("{}.rs", name)); let dir_mod = dir_path.join(format!("{}/mod.rs", name)); let file_dir_mod = dir_path.join(format!("{}/{}.rs", mod_name, name)); let mut candidates = ArrayVec::<[_; 2]>::new(); if is_dir_owner { candidates.push(file_mod.clone()); candidates.push(dir_mod); } else { candidates.push(file_dir_mod.clone()); }; let sr = db.source_root(source_root_id); let points_to = candidates .into_iter() .filter_map(|path| sr.files.get(&path)) .map(|&it| it) .collect::>(); let problem = if points_to.is_empty() { Some(Problem::UnresolvedModule { candidate: if is_dir_owner { file_mod } else { file_dir_mod }, }) } else { None }; (points_to, problem) }