//! This module implements import-resolution/macro expansion algorithm. //! //! The result of this module is `CrateDefMap`: a data structure which contains: //! //! * a tree of modules for the crate //! * for each module, a set of items visible in the module (directly declared //! or imported) //! //! Note that `CrateDefMap` contains fully macro expanded code. //! //! Computing `CrateDefMap` can be partitioned into several logically //! independent "phases". The phases are mutually recursive though, there's no //! strict ordering. //! //! ## Collecting RawItems //! //! This happens in the `raw` module, which parses a single source file into a //! set of top-level items. Nested imports are desugared to flat imports in //! this phase. Macro calls are represented as a triple of (Path, Option, //! TokenTree). //! //! ## Collecting Modules //! //! This happens in the `collector` module. In this phase, we recursively walk //! tree of modules, collect raw items from submodules, populate module scopes //! with defined items (so, we assign item ids in this phase) and record the set //! of unresolved imports and macros. //! //! While we walk tree of modules, we also record macro_rules definitions and //! expand calls to macro_rules defined macros. //! //! ## Resolving Imports //! //! We maintain a list of currently unresolved imports. On every iteration, we //! try to resolve some imports from this list. If the import is resolved, we //! record it, by adding an item to current module scope and, if necessary, by //! recursively populating glob imports. //! //! ## Resolving Macros //! //! macro_rules from the same crate use a global mutable namespace. We expand //! them immediately, when we collect modules. //! //! Macros from other crates (including proc-macros) can be used with //! `foo::bar!` syntax. We handle them similarly to imports. There's a list of //! unexpanded macros. On every iteration, we try to resolve each macro call //! path and, upon success, we run macro expansion and "collect module" phase //! on the result mod per_ns; mod collector; mod mod_resolution; #[cfg(test)] mod tests; use std::sync::Arc; use hir_def::CrateModuleId; use once_cell::sync::Lazy; use ra_arena::Arena; use ra_db::{Edition, FileId}; use ra_prof::profile; use ra_syntax::ast; use rustc_hash::{FxHashMap, FxHashSet}; use test_utils::tested_by; use crate::{ db::{AstDatabase, DefDatabase}, diagnostics::DiagnosticSink, ids::MacroDefId, nameres::diagnostics::DefDiagnostic, Adt, AstId, BuiltinType, Crate, HirFileId, MacroDef, Module, ModuleDef, Name, Path, PathKind, Trait, }; pub use self::per_ns::{Namespace, PerNs}; pub use hir_def::nameres::raw::ImportId; /// Contains all top-level defs from a macro-expanded crate #[derive(Debug, PartialEq, Eq)] pub struct CrateDefMap { krate: Crate, edition: Edition, /// The prelude module for this crate. This either comes from an import /// marked with the `prelude_import` attribute, or (in the normal case) from /// a dependency (`std` or `core`). prelude: Option, extern_prelude: FxHashMap, root: CrateModuleId, modules: Arena, /// Some macros are not well-behavior, which leads to infinite loop /// e.g. macro_rules! foo { ($ty:ty) => { foo!($ty); } } /// We mark it down and skip it in collector /// /// FIXME: /// Right now it only handle a poison macro in a single crate, /// such that if other crate try to call that macro, /// the whole process will do again until it became poisoned in that crate. /// We should handle this macro set globally /// However, do we want to put it as a global variable? poison_macros: FxHashSet, diagnostics: Vec, } impl std::ops::Index for CrateDefMap { type Output = ModuleData; fn index(&self, id: CrateModuleId) -> &ModuleData { &self.modules[id] } } #[derive(Default, Debug, PartialEq, Eq)] pub struct ModuleData { pub(crate) parent: Option, pub(crate) children: FxHashMap, pub(crate) scope: ModuleScope, /// None for root pub(crate) declaration: Option>, /// None for inline modules. /// /// Note that non-inline modules, by definition, live inside non-macro file. pub(crate) definition: Option, } #[derive(Debug, Default, PartialEq, Eq, Clone)] pub struct ModuleScope { items: FxHashMap, /// Macros visable in current module in legacy textual scope /// /// For macros invoked by an unquatified identifier like `bar!()`, `legacy_macros` will be searched in first. /// If it yields no result, then it turns to module scoped `macros`. /// It macros with name quatified with a path like `crate::foo::bar!()`, `legacy_macros` will be skipped, /// and only normal scoped `macros` will be searched in. /// /// Note that this automatically inherit macros defined textually before the definition of module itself. /// /// Module scoped macros will be inserted into `items` instead of here. // FIXME: Macro shadowing in one module is not properly handled. Non-item place macros will // be all resolved to the last one defined if shadowing happens. legacy_macros: FxHashMap, } static BUILTIN_SCOPE: Lazy> = Lazy::new(|| { BuiltinType::ALL .iter() .map(|(name, ty)| { (name.clone(), Resolution { def: PerNs::types(ty.clone().into()), import: None }) }) .collect() }); /// Legacy macros can only be accessed through special methods like `get_legacy_macros`. /// Other methods will only resolve values, types and module scoped macros only. impl ModuleScope { pub fn entries<'a>(&'a self) -> impl Iterator + 'a { //FIXME: shadowing self.items.iter().chain(BUILTIN_SCOPE.iter()) } /// Iterate over all module scoped macros pub fn macros<'a>(&'a self) -> impl Iterator + 'a { self.items .iter() .filter_map(|(name, res)| res.def.get_macros().map(|macro_| (name, macro_))) } /// Iterate over all legacy textual scoped macros visable at the end of the module pub fn legacy_macros<'a>(&'a self) -> impl Iterator + 'a { self.legacy_macros.iter().map(|(name, def)| (name, *def)) } /// Get a name from current module scope, legacy macros are not included pub fn get(&self, name: &Name) -> Option<&Resolution> { self.items.get(name).or_else(|| BUILTIN_SCOPE.get(name)) } pub fn traits<'a>(&'a self) -> impl Iterator + 'a { self.items.values().filter_map(|r| match r.def.take_types() { Some(ModuleDef::Trait(t)) => Some(t), _ => None, }) } fn get_legacy_macro(&self, name: &Name) -> Option { self.legacy_macros.get(name).copied() } } #[derive(Debug, Clone, PartialEq, Eq, Default)] pub struct Resolution { /// None for unresolved pub def: PerNs, /// ident by which this is imported into local scope. pub import: Option, } impl Resolution { pub(crate) fn from_macro(macro_: MacroDef) -> Self { Resolution { def: PerNs::macros(macro_), import: None } } } #[derive(Debug, Clone)] struct ResolvePathResult { resolved_def: PerNs, segment_index: Option, reached_fixedpoint: ReachedFixedPoint, } impl ResolvePathResult { fn empty(reached_fixedpoint: ReachedFixedPoint) -> ResolvePathResult { ResolvePathResult::with(PerNs::none(), reached_fixedpoint, None) } fn with( resolved_def: PerNs, reached_fixedpoint: ReachedFixedPoint, segment_index: Option, ) -> ResolvePathResult { ResolvePathResult { resolved_def, reached_fixedpoint, segment_index } } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum ResolveMode { Import, Other, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum ReachedFixedPoint { Yes, No, } impl CrateDefMap { pub(crate) fn crate_def_map_query( // Note that this doesn't have `+ AstDatabase`! // This gurantess that `CrateDefMap` is stable across reparses. db: &impl DefDatabase, krate: Crate, ) -> Arc { let _p = profile("crate_def_map_query"); let def_map = { let edition = krate.edition(db); let mut modules: Arena = Arena::default(); let root = modules.alloc(ModuleData::default()); CrateDefMap { krate, edition, extern_prelude: FxHashMap::default(), prelude: None, root, modules, poison_macros: FxHashSet::default(), diagnostics: Vec::new(), } }; let def_map = collector::collect_defs(db, def_map); Arc::new(def_map) } pub(crate) fn krate(&self) -> Crate { self.krate } pub(crate) fn root(&self) -> CrateModuleId { self.root } pub(crate) fn prelude(&self) -> Option { self.prelude } pub(crate) fn extern_prelude(&self) -> &FxHashMap { &self.extern_prelude } pub(crate) fn add_diagnostics( &self, db: &(impl DefDatabase + AstDatabase), module: CrateModuleId, sink: &mut DiagnosticSink, ) { self.diagnostics.iter().for_each(|it| it.add_to(db, module, sink)) } pub(crate) fn find_module_by_source( &self, file_id: HirFileId, decl_id: Option>, ) -> Option { let (module_id, _module_data) = self.modules.iter().find(|(_module_id, module_data)| { if decl_id.is_some() { module_data.declaration == decl_id } else { module_data.definition.map(|it| it.into()) == Some(file_id) } })?; Some(module_id) } pub(crate) fn resolve_path( &self, db: &impl DefDatabase, original_module: CrateModuleId, path: &Path, ) -> (PerNs, Option) { let res = self.resolve_path_fp_with_macro(db, ResolveMode::Other, original_module, path); (res.resolved_def, res.segment_index) } // Returns Yes if we are sure that additions to `ItemMap` wouldn't change // the result. fn resolve_path_fp_with_macro( &self, db: &impl DefDatabase, mode: ResolveMode, original_module: CrateModuleId, path: &Path, ) -> ResolvePathResult { let mut segments = path.segments.iter().enumerate(); let mut curr_per_ns: PerNs = match path.kind { PathKind::DollarCrate(crate_id) => { let krate = Crate { crate_id }; if krate == self.krate { tested_by!(macro_dollar_crate_self); PerNs::types(Module::new(self.krate, self.root).into()) } else { match krate.root_module(db) { Some(module) => { tested_by!(macro_dollar_crate_other); PerNs::types(module.into()) } None => return ResolvePathResult::empty(ReachedFixedPoint::Yes), } } } PathKind::Crate => PerNs::types(Module::new(self.krate, self.root).into()), PathKind::Self_ => PerNs::types(Module::new(self.krate, original_module).into()), // plain import or absolute path in 2015: crate-relative with // fallback to extern prelude (with the simplification in // rust-lang/rust#57745) // FIXME there must be a nicer way to write this condition PathKind::Plain | PathKind::Abs if self.edition == Edition::Edition2015 && (path.kind == PathKind::Abs || mode == ResolveMode::Import) => { let segment = match segments.next() { Some((_, segment)) => segment, None => return ResolvePathResult::empty(ReachedFixedPoint::Yes), }; log::debug!("resolving {:?} in crate root (+ extern prelude)", segment); self.resolve_name_in_crate_root_or_extern_prelude(&segment.name) } PathKind::Plain => { let segment = match segments.next() { Some((_, segment)) => segment, None => return ResolvePathResult::empty(ReachedFixedPoint::Yes), }; log::debug!("resolving {:?} in module", segment); self.resolve_name_in_module(db, original_module, &segment.name) } PathKind::Super => { if let Some(p) = self.modules[original_module].parent { PerNs::types(Module::new(self.krate, p).into()) } else { log::debug!("super path in root module"); return ResolvePathResult::empty(ReachedFixedPoint::Yes); } } PathKind::Abs => { // 2018-style absolute path -- only extern prelude let segment = match segments.next() { Some((_, segment)) => segment, None => return ResolvePathResult::empty(ReachedFixedPoint::Yes), }; if let Some(def) = self.extern_prelude.get(&segment.name) { log::debug!("absolute path {:?} resolved to crate {:?}", path, def); PerNs::types(*def) } else { return ResolvePathResult::empty(ReachedFixedPoint::No); // extern crate declarations can add to the extern prelude } } PathKind::Type(_) => { // This is handled in `infer::infer_path_expr` // The result returned here does not matter return ResolvePathResult::empty(ReachedFixedPoint::Yes); } }; for (i, segment) in segments { let curr = match curr_per_ns.take_types() { Some(r) => r, None => { // we still have path segments left, but the path so far // didn't resolve in the types namespace => no resolution // (don't break here because `curr_per_ns` might contain // something in the value namespace, and it would be wrong // to return that) return ResolvePathResult::empty(ReachedFixedPoint::No); } }; // resolve segment in curr curr_per_ns = match curr { ModuleDef::Module(module) => { if module.krate() != self.krate { let path = Path { segments: path.segments[i..].to_vec(), kind: PathKind::Self_ }; log::debug!("resolving {:?} in other crate", path); let defp_map = db.crate_def_map(module.krate()); let (def, s) = defp_map.resolve_path(db, module.id.module_id, &path); return ResolvePathResult::with( def, ReachedFixedPoint::Yes, s.map(|s| s + i), ); } // Since it is a qualified path here, it should not contains legacy macros match self[module.id.module_id].scope.get(&segment.name) { Some(res) => res.def, _ => { log::debug!("path segment {:?} not found", segment.name); return ResolvePathResult::empty(ReachedFixedPoint::No); } } } ModuleDef::Adt(Adt::Enum(e)) => { // enum variant tested_by!(can_import_enum_variant); match e.variant(db, &segment.name) { Some(variant) => PerNs::both(variant.into(), variant.into()), None => { return ResolvePathResult::with( PerNs::types(e.into()), ReachedFixedPoint::Yes, Some(i), ); } } } s => { // could be an inherent method call in UFCS form // (`Struct::method`), or some other kind of associated item log::debug!( "path segment {:?} resolved to non-module {:?}, but is not last", segment.name, curr, ); return ResolvePathResult::with( PerNs::types(s), ReachedFixedPoint::Yes, Some(i), ); } }; } ResolvePathResult::with(curr_per_ns, ReachedFixedPoint::Yes, None) } fn resolve_name_in_crate_root_or_extern_prelude(&self, name: &Name) -> PerNs { let from_crate_root = self[self.root].scope.get(name).map_or_else(PerNs::none, |res| res.def); let from_extern_prelude = self.resolve_name_in_extern_prelude(name); from_crate_root.or(from_extern_prelude) } pub(crate) fn resolve_name_in_module( &self, db: &impl DefDatabase, module: CrateModuleId, name: &Name, ) -> PerNs { // Resolve in: // - legacy scope of macro // - current module / scope // - extern prelude // - std prelude let from_legacy_macro = self[module].scope.get_legacy_macro(name).map_or_else(PerNs::none, PerNs::macros); let from_scope = self[module].scope.get(name).map_or_else(PerNs::none, |res| res.def); let from_extern_prelude = self.extern_prelude.get(name).map_or(PerNs::none(), |&it| PerNs::types(it)); let from_prelude = self.resolve_in_prelude(db, name); from_legacy_macro.or(from_scope).or(from_extern_prelude).or(from_prelude) } fn resolve_name_in_extern_prelude(&self, name: &Name) -> PerNs { self.extern_prelude.get(name).map_or(PerNs::none(), |&it| PerNs::types(it)) } fn resolve_in_prelude(&self, db: &impl DefDatabase, name: &Name) -> PerNs { if let Some(prelude) = self.prelude { let keep; let def_map = if prelude.krate() == self.krate { self } else { // Extend lifetime keep = db.crate_def_map(prelude.krate()); &keep }; def_map[prelude.id.module_id].scope.get(name).map_or_else(PerNs::none, |res| res.def) } else { PerNs::none() } } } mod diagnostics { use ra_syntax::{ast, AstPtr}; use relative_path::RelativePathBuf; use crate::{ db::{AstDatabase, DefDatabase}, diagnostics::{DiagnosticSink, UnresolvedModule}, nameres::CrateModuleId, AstId, }; #[derive(Debug, PartialEq, Eq)] pub(super) enum DefDiagnostic { UnresolvedModule { module: CrateModuleId, declaration: AstId, candidate: RelativePathBuf, }, } impl DefDiagnostic { pub(super) fn add_to( &self, db: &(impl DefDatabase + AstDatabase), target_module: CrateModuleId, sink: &mut DiagnosticSink, ) { match self { DefDiagnostic::UnresolvedModule { module, declaration, candidate } => { if *module != target_module { return; } let decl = declaration.to_node(db); sink.push(UnresolvedModule { file: declaration.file_id(), decl: AstPtr::new(&decl), candidate: candidate.clone(), }) } } } } }