use std::sync::Arc; use rustc_hash::FxHashMap; use ra_arena::Arena; use test_utils::tested_by; use crate::{ Function, Module, Struct, Enum, Const, Static, Trait, TypeAlias, Crate, PersistentHirDatabase, HirFileId, Name, Path, KnownName, nameres::{Resolution, PerNs, ModuleDef, ReachedFixedPoint, ResolveMode}, ids::{AstItemDef, LocationCtx, MacroCallLoc, SourceItemId, MacroCallId}, module_tree::resolve_module_declaration, }; use super::{CrateDefMap, ModuleId, ModuleData, raw}; #[allow(unused)] pub(crate) fn crate_def_map_query( db: &impl PersistentHirDatabase, krate: Crate, ) -> Arc { let mut def_map = { let edition = krate.edition(db); let mut modules: Arena = Arena::default(); let root = modules.alloc(ModuleData::default()); CrateDefMap { krate, edition, extern_prelude: FxHashMap::default(), prelude: None, root, modules, public_macros: FxHashMap::default(), } }; // populate external prelude for dep in krate.dependencies(db) { log::debug!("crate dep {:?} -> {:?}", dep.name, dep.krate); if let Some(module) = dep.krate.root_module(db) { def_map.extern_prelude.insert(dep.name.clone(), module.into()); } // look for the prelude if def_map.prelude.is_none() { let item_map = db.item_map(dep.krate); if item_map.prelude.is_some() { def_map.prelude = item_map.prelude; } } } let mut collector = DefCollector { db, krate, def_map, glob_imports: FxHashMap::default(), unresolved_imports: Vec::new(), unexpanded_macros: Vec::new(), global_macro_scope: FxHashMap::default(), }; collector.collect(); let def_map = collector.finish(); Arc::new(def_map) } /// Walks the tree of module recursively struct DefCollector { db: DB, krate: Crate, def_map: CrateDefMap, glob_imports: FxHashMap>, unresolved_imports: Vec<(ModuleId, raw::ImportId, raw::ImportData)>, unexpanded_macros: Vec<(ModuleId, MacroCallId, Path, tt::Subtree)>, global_macro_scope: FxHashMap, } /// Walks a single module, populating defs, imports and macros struct ModCollector<'a, D> { def_collector: D, module_id: ModuleId, file_id: HirFileId, raw_items: &'a raw::RawItems, } impl<'a, DB> DefCollector<&'a DB> where DB: PersistentHirDatabase, { fn collect(&mut self) { let crate_graph = self.db.crate_graph(); let file_id = crate_graph.crate_root(self.krate.crate_id()); let raw_items = raw::RawItems::raw_items_query(self.db, file_id); let module_id = self.def_map.root; ModCollector { def_collector: &mut *self, module_id, file_id: file_id.into(), raw_items: &raw_items, } .collect(raw_items.items()); // main name resolution fixed-point loop. let mut i = 0; loop { match (self.resolve_imports(), self.resolve_macros()) { (ReachedFixedPoint::Yes, ReachedFixedPoint::Yes) => break, _ => i += 1, } if i == 1000 { log::error!("diverging name resolution"); break; } } } fn define_macro(&mut self, name: Name, tt: &tt::Subtree, export: bool) { if let Ok(rules) = mbe::MacroRules::parse(tt) { if export { self.def_map.public_macros.insert(name.clone(), rules.clone()); } self.global_macro_scope.insert(name, rules); } } fn alloc_module(&mut self) -> ModuleId { self.def_map.modules.alloc(ModuleData::default()) } fn resolve_imports(&mut self) -> ReachedFixedPoint { let mut imports = std::mem::replace(&mut self.unresolved_imports, Vec::new()); let mut resolved = Vec::new(); imports.retain(|(module_id, import, import_data)| { let (def, fp) = self.resolve_import(*module_id, import_data); if fp == ReachedFixedPoint::Yes { resolved.push((*module_id, def, *import, import_data.clone())) } fp == ReachedFixedPoint::No }); self.unresolved_imports = imports; // Resolves imports, filling-in module scopes let result = if resolved.is_empty() { ReachedFixedPoint::Yes } else { ReachedFixedPoint::No }; for (module_id, def, import, import_data) in resolved { self.record_resolved_import(module_id, def, import, &import_data) } result } fn resolve_import( &mut self, module_id: ModuleId, import: &raw::ImportData, ) -> (PerNs, ReachedFixedPoint) { log::debug!("resolving import: {:?} ({:?})", import, self.def_map.edition); if import.is_extern_crate { let res = self.def_map.resolve_name_in_extern_prelude( &import .path .as_ident() .expect("extern crate should have been desugared to one-element path"), ); // FIXME: why do we return No here? (res, if res.is_none() { ReachedFixedPoint::No } else { ReachedFixedPoint::Yes }) } else { let res = self.def_map.resolve_path_fp(self.db, ResolveMode::Import, module_id, &import.path); (res.resolved_def, res.reached_fixedpoint) } } fn record_resolved_import( &mut self, module_id: ModuleId, def: PerNs, import_id: raw::ImportId, import: &raw::ImportData, ) { if import.is_glob { log::debug!("glob import: {:?}", import); match def.take_types() { Some(ModuleDef::Module(m)) => { if import.is_prelude { tested_by!(std_prelude); self.def_map.prelude = Some(m); } else if m.krate != self.krate { tested_by!(glob_across_crates); // glob import from other crate => we can just import everything once let item_map = self.db.item_map(m.krate); let scope = &item_map[m.module_id]; let items = scope .items .iter() .map(|(name, res)| (name.clone(), res.clone())) .collect::>(); self.update(module_id, Some(import_id), &items); } else { // glob import from same crate => we do an initial // import, and then need to propagate any further // additions let scope = &self.def_map[m.module_id]; let items = scope .items .iter() .map(|(name, res)| (name.clone(), res.clone())) .collect::>(); self.update(module_id, Some(import_id), &items); // record the glob import in case we add further items self.glob_imports .entry(m.module_id) .or_default() .push((module_id, import_id)); } } Some(ModuleDef::Enum(e)) => { tested_by!(glob_enum); // glob import from enum => just import all the variants let variants = e.variants(self.db); let resolutions = variants .into_iter() .filter_map(|variant| { let res = Resolution { def: PerNs::both(variant.into(), variant.into()), import: Some(import_id), }; let name = variant.name(self.db)?; Some((name, res)) }) .collect::>(); self.update(module_id, Some(import_id), &resolutions); } Some(d) => { log::debug!("glob import {:?} from non-module/enum {:?}", import, d); } None => { log::debug!("glob import {:?} didn't resolve as type", import); } } } else { let last_segment = import.path.segments.last().unwrap(); let name = import.alias.clone().unwrap_or_else(|| last_segment.name.clone()); log::debug!("resolved import {:?} ({:?}) to {:?}", name, import, def); // extern crates in the crate root are special-cased to insert entries into the extern prelude: rust-lang/rust#54658 if let Some(root_module) = self.krate.root_module(self.db) { if import.is_extern_crate && module_id == root_module.module_id { if let Some(def) = def.take_types() { self.def_map.extern_prelude.insert(name.clone(), def); } } } let resolution = Resolution { def, import: Some(import_id) }; self.update(module_id, None, &[(name, resolution)]); } } fn update( &mut self, module_id: ModuleId, import: Option, resolutions: &[(Name, Resolution)], ) { self.update_recursive(module_id, import, resolutions, 0) } fn update_recursive( &mut self, module_id: ModuleId, import: Option, resolutions: &[(Name, Resolution)], depth: usize, ) { if depth > 100 { // prevent stack overflows (but this shouldn't be possible) panic!("infinite recursion in glob imports!"); } let module_items = &mut self.def_map.modules[module_id].scope; let mut changed = false; for (name, res) in resolutions { let existing = module_items.items.entry(name.clone()).or_default(); if existing.def.types.is_none() && res.def.types.is_some() { existing.def.types = res.def.types; existing.import = import.or(res.import); changed = true; } if existing.def.values.is_none() && res.def.values.is_some() { existing.def.values = res.def.values; existing.import = import.or(res.import); changed = true; } } if !changed { return; } let glob_imports = self .glob_imports .get(&module_id) .into_iter() .flat_map(|v| v.iter()) .cloned() .collect::>(); for (glob_importing_module, glob_import) in glob_imports { // We pass the glob import so that the tracked import in those modules is that glob import self.update_recursive(glob_importing_module, Some(glob_import), resolutions, depth + 1); } } // XXX: this is just a pile of hacks now, because `PerNs` does not handle // macro namespace. fn resolve_macros(&mut self) -> ReachedFixedPoint { let mut macros = std::mem::replace(&mut self.unexpanded_macros, Vec::new()); let mut resolved = Vec::new(); macros.retain(|(module_id, call_id, path, tt)| { if path.segments.len() != 2 { return true; } let crate_name = &path.segments[0].name; let krate = match self.def_map.resolve_name_in_extern_prelude(crate_name).take_types() { Some(ModuleDef::Module(m)) => m.krate(self.db), _ => return true, }; let krate = match krate { Some(it) => it, _ => return true, }; // FIXME: this should be a proper query let def_map = crate_def_map_query(self.db, krate); let rules = def_map.public_macros.get(&path.segments[1].name).cloned(); resolved.push((*module_id, *call_id, rules, tt.clone())); false }); let res = if resolved.is_empty() { ReachedFixedPoint::Yes } else { ReachedFixedPoint::No }; for (module_id, macro_call_id, rules, arg) in resolved { if let Some(rules) = rules { if let Ok(tt) = rules.expand(&arg) { self.collect_macro_expansion(module_id, macro_call_id, tt); } } } res } fn collect_macro_expansion( &mut self, module_id: ModuleId, macro_call_id: MacroCallId, expansion: tt::Subtree, ) { // XXX: this **does not** go through a database, because we can't // identify macro_call without adding the whole state of name resolution // as a parameter to the query. // // So, we run the queries "manually" and we must ensure that // `db.hir_parse(macro_call_id)` returns the same source_file. let file_id: HirFileId = macro_call_id.into(); let source_file = mbe::token_tree_to_ast_item_list(&expansion); let raw_items = raw::RawItems::from_source_file(&source_file, file_id); ModCollector { def_collector: &mut *self, file_id, module_id, raw_items: &raw_items } .collect(raw_items.items()) } fn finish(self) -> CrateDefMap { self.def_map } } impl ModCollector<'_, &'_ mut DefCollector<&'_ DB>> where DB: PersistentHirDatabase, { fn collect(&mut self, items: &[raw::RawItem]) { for item in items { match *item { raw::RawItem::Module(m) => self.collect_module(&self.raw_items[m]), raw::RawItem::Import(import) => self.def_collector.unresolved_imports.push(( self.module_id, import, self.raw_items[import].clone(), )), raw::RawItem::Def(def) => self.define_def(&self.raw_items[def]), raw::RawItem::Macro(mac) => self.collect_macro(&self.raw_items[mac]), } } } fn collect_module(&mut self, module: &raw::ModuleData) { match module { // inline module, just recurse raw::ModuleData::Definition { name, items } => { let module_id = self.push_child_module(name.clone()); ModCollector { def_collector: &mut *self.def_collector, module_id, file_id: self.file_id, raw_items: self.raw_items, } .collect(&*items); } // out of line module, resovle, parse and recurse raw::ModuleData::Declaration { name } => { let module_id = self.push_child_module(name.clone()); let is_root = self.def_collector.def_map.modules[self.module_id].parent.is_none(); if let Some(file_id) = resolve_module_declaration(self.def_collector.db, self.file_id, name, is_root) { let raw_items = raw::RawItems::raw_items_query(self.def_collector.db, file_id); ModCollector { def_collector: &mut *self.def_collector, module_id, file_id: file_id.into(), raw_items: &raw_items, } .collect(raw_items.items()) } } } } fn push_child_module(&mut self, name: Name) -> ModuleId { let res = self.def_collector.alloc_module(); self.def_collector.def_map.modules[res].parent = Some(self.module_id); self.def_collector.def_map.modules[self.module_id].children.insert(name, res); res } fn define_def(&mut self, def: &raw::DefData) { let module = Module { krate: self.def_collector.krate, module_id: self.module_id }; let ctx = LocationCtx::new(self.def_collector.db, module, self.file_id.into()); macro_rules! id { () => { AstItemDef::from_source_item_id_unchecked(ctx, def.source_item_id) }; } let name = def.name.clone(); let def: PerNs = match def.kind { raw::DefKind::Function => PerNs::values(Function { id: id!() }.into()), raw::DefKind::Struct => { let s = Struct { id: id!() }.into(); PerNs::both(s, s) } raw::DefKind::Enum => PerNs::types(Enum { id: id!() }.into()), raw::DefKind::Const => PerNs::values(Const { id: id!() }.into()), raw::DefKind::Static => PerNs::values(Static { id: id!() }.into()), raw::DefKind::Trait => PerNs::types(Trait { id: id!() }.into()), raw::DefKind::TypeAlias => PerNs::types(TypeAlias { id: id!() }.into()), }; let resolution = Resolution { def, import: None }; self.def_collector.update(self.module_id, None, &[(name, resolution)]) } fn collect_macro(&mut self, mac: &raw::MacroData) { // Case 1: macro rules, define a macro in crate-global mutable scope if is_macro_rules(&mac.path) { if let Some(name) = &mac.name { self.def_collector.define_macro(name.clone(), &mac.arg, mac.export) } return; } let source_item_id = SourceItemId { file_id: self.file_id, item_id: mac.source_item_id }; let macro_call_id = MacroCallLoc { module: Module { krate: self.def_collector.krate, module_id: self.module_id }, source_item_id, } .id(self.def_collector.db); // Case 2: try to expand macro_rules from this crate, triggering // recursive item collection. if let Some(rules) = mac.path.as_ident().and_then(|name| self.def_collector.global_macro_scope.get(name)) { if let Ok(tt) = rules.expand(&mac.arg) { self.def_collector.collect_macro_expansion(self.module_id, macro_call_id, tt); } return; } // Case 3: path to a macro from another crate, expand during name resolution self.def_collector.unexpanded_macros.push(( self.module_id, macro_call_id, mac.path.clone(), mac.arg.clone(), )) } } fn is_macro_rules(path: &Path) -> bool { path.as_ident().and_then(Name::as_known_name) == Some(KnownName::MacroRules) }