//! The type system. We currently use this to infer types for completion, hover //! information and various assists. mod autoderef; pub(crate) mod primitive; #[cfg(test)] mod tests; pub(crate) mod traits; pub(crate) mod method_resolution; mod op; mod lower; mod infer; pub(crate) mod display; use std::ops::Deref; use std::sync::Arc; use std::{fmt, iter, mem}; use crate::{ db::HirDatabase, expr::ExprId, util::make_mut_slice, Adt, Crate, DefWithBody, GenericParams, HasGenericParams, Mutability, Name, Trait, TypeAlias, }; use display::{HirDisplay, HirFormatter}; pub(crate) use autoderef::autoderef; pub(crate) use infer::{infer_query, InferTy, InferenceResult}; pub use lower::CallableDef; pub(crate) use lower::{ callable_item_sig, generic_defaults_query, generic_predicates_for_param_query, generic_predicates_query, type_for_def, type_for_field, TypableDef, }; pub(crate) use traits::{InEnvironment, Obligation, ProjectionPredicate, TraitEnvironment}; /// A type constructor or type name: this might be something like the primitive /// type `bool`, a struct like `Vec`, or things like function pointers or /// tuples. #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)] pub enum TypeCtor { /// The primitive boolean type. Written as `bool`. Bool, /// The primitive character type; holds a Unicode scalar value /// (a non-surrogate code point). Written as `char`. Char, /// A primitive integer type. For example, `i32`. Int(primitive::UncertainIntTy), /// A primitive floating-point type. For example, `f64`. Float(primitive::UncertainFloatTy), /// Structures, enumerations and unions. Adt(Adt), /// The pointee of a string slice. Written as `str`. Str, /// The pointee of an array slice. Written as `[T]`. Slice, /// An array with the given length. Written as `[T; n]`. Array, /// A raw pointer. Written as `*mut T` or `*const T` RawPtr(Mutability), /// A reference; a pointer with an associated lifetime. Written as /// `&'a mut T` or `&'a T`. Ref(Mutability), /// The anonymous type of a function declaration/definition. Each /// function has a unique type, which is output (for a function /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`. /// /// This includes tuple struct / enum variant constructors as well. /// /// For example the type of `bar` here: /// /// ```rust /// fn foo() -> i32 { 1 } /// let bar = foo; // bar: fn() -> i32 {foo} /// ``` FnDef(CallableDef), /// A pointer to a function. Written as `fn() -> i32`. /// /// For example the type of `bar` here: /// /// ```rust /// fn foo() -> i32 { 1 } /// let bar: fn() -> i32 = foo; /// ``` FnPtr { num_args: u16 }, /// The never type `!`. Never, /// A tuple type. For example, `(i32, bool)`. Tuple { cardinality: u16 }, /// Represents an associated item like `Iterator::Item`. This is used /// when we have tried to normalize a projection like `T::Item` but /// couldn't find a better representation. In that case, we generate /// an **application type** like `(Iterator::Item)`. AssociatedType(TypeAlias), /// The type of a specific closure. /// /// The closure signature is stored in a `FnPtr` type in the first type /// parameter. Closure { def: DefWithBody, expr: ExprId }, } impl TypeCtor { pub fn num_ty_params(self, db: &impl HirDatabase) -> usize { match self { TypeCtor::Bool | TypeCtor::Char | TypeCtor::Int(_) | TypeCtor::Float(_) | TypeCtor::Str | TypeCtor::Never => 0, TypeCtor::Slice | TypeCtor::Array | TypeCtor::RawPtr(_) | TypeCtor::Ref(_) | TypeCtor::Closure { .. } // 1 param representing the signature of the closure => 1, TypeCtor::Adt(adt) => { let generic_params = adt.generic_params(db); generic_params.count_params_including_parent() } TypeCtor::FnDef(callable) => { let generic_params = callable.generic_params(db); generic_params.count_params_including_parent() } TypeCtor::AssociatedType(type_alias) => { let generic_params = type_alias.generic_params(db); generic_params.count_params_including_parent() } TypeCtor::FnPtr { num_args } => num_args as usize + 1, TypeCtor::Tuple { cardinality } => cardinality as usize, } } pub fn krate(self, db: &impl HirDatabase) -> Option { match self { TypeCtor::Bool | TypeCtor::Char | TypeCtor::Int(_) | TypeCtor::Float(_) | TypeCtor::Str | TypeCtor::Never | TypeCtor::Slice | TypeCtor::Array | TypeCtor::RawPtr(_) | TypeCtor::Ref(_) | TypeCtor::FnPtr { .. } | TypeCtor::Tuple { .. } => None, TypeCtor::Closure { def, .. } => def.krate(db), TypeCtor::Adt(adt) => adt.krate(db), TypeCtor::FnDef(callable) => callable.krate(db), TypeCtor::AssociatedType(type_alias) => type_alias.krate(db), } } pub fn as_generic_def(self) -> Option { match self { TypeCtor::Bool | TypeCtor::Char | TypeCtor::Int(_) | TypeCtor::Float(_) | TypeCtor::Str | TypeCtor::Never | TypeCtor::Slice | TypeCtor::Array | TypeCtor::RawPtr(_) | TypeCtor::Ref(_) | TypeCtor::FnPtr { .. } | TypeCtor::Tuple { .. } | TypeCtor::Closure { .. } => None, TypeCtor::Adt(adt) => Some(adt.into()), TypeCtor::FnDef(callable) => Some(callable.into()), TypeCtor::AssociatedType(type_alias) => Some(type_alias.into()), } } } /// A nominal type with (maybe 0) type parameters. This might be a primitive /// type like `bool`, a struct, tuple, function pointer, reference or /// several other things. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct ApplicationTy { pub ctor: TypeCtor, pub parameters: Substs, } /// A "projection" type corresponds to an (unnormalized) /// projection like `>::Foo`. Note that the /// trait and all its parameters are fully known. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct ProjectionTy { pub associated_ty: TypeAlias, pub parameters: Substs, } impl ProjectionTy { pub fn trait_ref(&self, db: &impl HirDatabase) -> TraitRef { TraitRef { trait_: self .associated_ty .parent_trait(db) .expect("projection ty without parent trait"), substs: self.parameters.clone(), } } } impl TypeWalk for ProjectionTy { fn walk(&self, f: &mut impl FnMut(&Ty)) { self.parameters.walk(f); } fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { self.parameters.walk_mut(f); } } /// A type. /// /// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents /// the same thing (but in a different way). /// /// This should be cheap to clone. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub enum Ty { /// A nominal type with (maybe 0) type parameters. This might be a primitive /// type like `bool`, a struct, tuple, function pointer, reference or /// several other things. Apply(ApplicationTy), /// A "projection" type corresponds to an (unnormalized) /// projection like `>::Foo`. Note that the /// trait and all its parameters are fully known. Projection(ProjectionTy), /// A type parameter; for example, `T` in `fn f(x: T) {} Param { /// The index of the parameter (starting with parameters from the /// surrounding impl, then the current function). idx: u32, /// The name of the parameter, for displaying. // FIXME get rid of this name: Name, }, /// A bound type variable. Used during trait resolution to represent Chalk /// variables, and in `Dyn` and `Opaque` bounds to represent the `Self` type. Bound(u32), /// A type variable used during type checking. Not to be confused with a /// type parameter. Infer(InferTy), /// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust). /// /// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)` /// represents the `Self` type inside the bounds. This is currently /// implicit; Chalk has the `Binders` struct to make it explicit, but it /// didn't seem worth the overhead yet. Dyn(Arc<[GenericPredicate]>), /// An opaque type (`impl Trait`). /// /// The predicates are quantified over the `Self` type; see `Ty::Dyn` for /// more. Opaque(Arc<[GenericPredicate]>), /// A placeholder for a type which could not be computed; this is propagated /// to avoid useless error messages. Doubles as a placeholder where type /// variables are inserted before type checking, since we want to try to /// infer a better type here anyway -- for the IDE use case, we want to try /// to infer as much as possible even in the presence of type errors. Unknown, } /// A list of substitutions for generic parameters. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct Substs(Arc<[Ty]>); impl Substs { pub fn empty() -> Substs { Substs(Arc::new([])) } pub fn single(ty: Ty) -> Substs { Substs(Arc::new([ty])) } pub fn prefix(&self, n: usize) -> Substs { Substs(self.0[..std::cmp::min(self.0.len(), n)].into()) } pub fn walk(&self, f: &mut impl FnMut(&Ty)) { for t in self.0.iter() { t.walk(f); } } pub fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { for t in make_mut_slice(&mut self.0) { t.walk_mut(f); } } pub fn as_single(&self) -> &Ty { if self.0.len() != 1 { panic!("expected substs of len 1, got {:?}", self); } &self.0[0] } /// Return Substs that replace each parameter by itself (i.e. `Ty::Param`). pub fn identity(generic_params: &GenericParams) -> Substs { Substs( generic_params .params_including_parent() .into_iter() .map(|p| Ty::Param { idx: p.idx, name: p.name.clone() }) .collect(), ) } /// Return Substs that replace each parameter by a bound variable. pub fn bound_vars(generic_params: &GenericParams) -> Substs { Substs( generic_params .params_including_parent() .into_iter() .map(|p| Ty::Bound(p.idx)) .collect(), ) } pub fn build_for_def( db: &impl HirDatabase, def: impl crate::HasGenericParams, ) -> SubstsBuilder { let params = def.generic_params(db); let param_count = params.count_params_including_parent(); Substs::builder(param_count) } pub fn build_for_generics(generic_params: &GenericParams) -> SubstsBuilder { Substs::builder(generic_params.count_params_including_parent()) } pub fn build_for_type_ctor(db: &impl HirDatabase, type_ctor: TypeCtor) -> SubstsBuilder { Substs::builder(type_ctor.num_ty_params(db)) } fn builder(param_count: usize) -> SubstsBuilder { SubstsBuilder { vec: Vec::with_capacity(param_count), param_count } } } #[derive(Debug, Clone)] pub struct SubstsBuilder { vec: Vec, param_count: usize, } impl SubstsBuilder { pub fn build(self) -> Substs { assert_eq!(self.vec.len(), self.param_count); Substs(self.vec.into()) } pub fn push(mut self, ty: Ty) -> Self { self.vec.push(ty); self } fn remaining(&self) -> usize { self.param_count - self.vec.len() } pub fn fill_with_bound_vars(self, starting_from: u32) -> Self { self.fill((starting_from..).map(Ty::Bound)) } pub fn fill_with_params(self) -> Self { let start = self.vec.len() as u32; self.fill((start..).map(|idx| Ty::Param { idx, name: Name::missing() })) } pub fn fill_with_unknown(self) -> Self { self.fill(iter::repeat(Ty::Unknown)) } pub fn fill(mut self, filler: impl Iterator) -> Self { self.vec.extend(filler.take(self.remaining())); self } pub fn use_parent_substs(mut self, parent_substs: &Substs) -> Self { assert!(self.vec.is_empty()); assert!(parent_substs.len() <= self.param_count); self.vec.extend(parent_substs.iter().cloned()); self } } impl Deref for Substs { type Target = [Ty]; fn deref(&self) -> &[Ty] { &self.0 } } /// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait. /// Name to be bikeshedded: TraitBound? TraitImplements? #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct TraitRef { /// FIXME name? pub trait_: Trait, pub substs: Substs, } impl TraitRef { pub fn self_ty(&self) -> &Ty { &self.substs[0] } } impl TypeWalk for TraitRef { fn walk(&self, f: &mut impl FnMut(&Ty)) { self.substs.walk(f); } fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { self.substs.walk_mut(f); } } /// Like `generics::WherePredicate`, but with resolved types: A condition on the /// parameters of a generic item. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub enum GenericPredicate { /// The given trait needs to be implemented for its type parameters. Implemented(TraitRef), /// An associated type bindings like in `Iterator`. Projection(ProjectionPredicate), /// We couldn't resolve the trait reference. (If some type parameters can't /// be resolved, they will just be Unknown). Error, } impl GenericPredicate { pub fn is_error(&self) -> bool { match self { GenericPredicate::Error => true, _ => false, } } pub fn is_implemented(&self) -> bool { match self { GenericPredicate::Implemented(_) => true, _ => false, } } pub fn trait_ref(&self, db: &impl HirDatabase) -> Option { match self { GenericPredicate::Implemented(tr) => Some(tr.clone()), GenericPredicate::Projection(proj) => Some(proj.projection_ty.trait_ref(db)), GenericPredicate::Error => None, } } } impl TypeWalk for GenericPredicate { fn walk(&self, f: &mut impl FnMut(&Ty)) { match self { GenericPredicate::Implemented(trait_ref) => trait_ref.walk(f), GenericPredicate::Projection(projection_pred) => projection_pred.walk(f), GenericPredicate::Error => {} } } fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { match self { GenericPredicate::Implemented(trait_ref) => trait_ref.walk_mut(f), GenericPredicate::Projection(projection_pred) => projection_pred.walk_mut(f), GenericPredicate::Error => {} } } } /// Basically a claim (currently not validated / checked) that the contained /// type / trait ref contains no inference variables; any inference variables it /// contained have been replaced by bound variables, and `num_vars` tells us how /// many there are. This is used to erase irrelevant differences between types /// before using them in queries. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub struct Canonical { pub value: T, pub num_vars: usize, } /// A function signature as seen by type inference: Several parameter types and /// one return type. #[derive(Clone, PartialEq, Eq, Debug)] pub struct FnSig { params_and_return: Arc<[Ty]>, } impl FnSig { pub fn from_params_and_return(mut params: Vec, ret: Ty) -> FnSig { params.push(ret); FnSig { params_and_return: params.into() } } pub fn from_fn_ptr_substs(substs: &Substs) -> FnSig { FnSig { params_and_return: Arc::clone(&substs.0) } } pub fn params(&self) -> &[Ty] { &self.params_and_return[0..self.params_and_return.len() - 1] } pub fn ret(&self) -> &Ty { &self.params_and_return[self.params_and_return.len() - 1] } } impl TypeWalk for FnSig { fn walk(&self, f: &mut impl FnMut(&Ty)) { for t in self.params_and_return.iter() { t.walk(f); } } fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { for t in make_mut_slice(&mut self.params_and_return) { t.walk_mut(f); } } } impl Ty { pub fn simple(ctor: TypeCtor) -> Ty { Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() }) } pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty { Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) }) } pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty { Ty::Apply(ApplicationTy { ctor, parameters }) } pub fn unit() -> Self { Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty()) } pub fn as_reference(&self) -> Option<(&Ty, Mutability)> { match self { Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => { Some((parameters.as_single(), *mutability)) } _ => None, } } pub fn as_adt(&self) -> Option<(Adt, &Substs)> { match self { Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => { Some((*adt_def, parameters)) } _ => None, } } pub fn as_tuple(&self) -> Option<&Substs> { match self { Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => { Some(parameters) } _ => None, } } pub fn as_callable(&self) -> Option<(CallableDef, &Substs)> { match self { Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(callable_def), parameters }) => { Some((*callable_def, parameters)) } _ => None, } } fn builtin_deref(&self) -> Option { match self { Ty::Apply(a_ty) => match a_ty.ctor { TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())), TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())), _ => None, }, _ => None, } } fn callable_sig(&self, db: &impl HirDatabase) -> Option { match self { Ty::Apply(a_ty) => match a_ty.ctor { TypeCtor::FnPtr { .. } => Some(FnSig::from_fn_ptr_substs(&a_ty.parameters)), TypeCtor::FnDef(def) => { let sig = db.callable_item_signature(def); Some(sig.subst(&a_ty.parameters)) } TypeCtor::Closure { .. } => { let sig_param = &a_ty.parameters[0]; sig_param.callable_sig(db) } _ => None, }, _ => None, } } /// If this is a type with type parameters (an ADT or function), replaces /// the `Substs` for these type parameters with the given ones. (So e.g. if /// `self` is `Option<_>` and the substs contain `u32`, we'll have /// `Option` afterwards.) pub fn apply_substs(self, substs: Substs) -> Ty { match self { Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => { assert_eq!(previous_substs.len(), substs.len()); Ty::Apply(ApplicationTy { ctor, parameters: substs }) } _ => self, } } /// Returns the type parameters of this type if it has some (i.e. is an ADT /// or function); so if `self` is `Option`, this returns the `u32`. pub fn substs(&self) -> Option { match self { Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()), _ => None, } } /// If this is an `impl Trait` or `dyn Trait`, returns that trait. pub fn inherent_trait(&self) -> Option { match self { Ty::Dyn(predicates) | Ty::Opaque(predicates) => { predicates.iter().find_map(|pred| match pred { GenericPredicate::Implemented(tr) => Some(tr.trait_), _ => None, }) } _ => None, } } } /// This allows walking structures that contain types to do something with those /// types, similar to Chalk's `Fold` trait. pub trait TypeWalk { fn walk(&self, f: &mut impl FnMut(&Ty)); fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)); fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self where Self: Sized, { self.walk_mut(&mut |ty_mut| { let ty = mem::replace(ty_mut, Ty::Unknown); *ty_mut = f(ty); }); self } /// Replaces type parameters in this type using the given `Substs`. (So e.g. /// if `self` is `&[T]`, where type parameter T has index 0, and the /// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.) fn subst(self, substs: &Substs) -> Self where Self: Sized, { self.fold(&mut |ty| match ty { Ty::Param { idx, name } => { substs.get(idx as usize).cloned().unwrap_or(Ty::Param { idx, name }) } ty => ty, }) } /// Substitutes `Ty::Bound` vars (as opposed to type parameters). fn subst_bound_vars(self, substs: &Substs) -> Self where Self: Sized, { self.fold(&mut |ty| match ty { Ty::Bound(idx) => substs.get(idx as usize).cloned().unwrap_or_else(|| Ty::Bound(idx)), ty => ty, }) } /// Shifts up `Ty::Bound` vars by `n`. fn shift_bound_vars(self, n: i32) -> Self where Self: Sized, { self.fold(&mut |ty| match ty { Ty::Bound(idx) => { assert!(idx as i32 >= -n); Ty::Bound((idx as i32 + n) as u32) } ty => ty, }) } } impl TypeWalk for Ty { fn walk(&self, f: &mut impl FnMut(&Ty)) { match self { Ty::Apply(a_ty) => { for t in a_ty.parameters.iter() { t.walk(f); } } Ty::Projection(p_ty) => { for t in p_ty.parameters.iter() { t.walk(f); } } Ty::Dyn(predicates) | Ty::Opaque(predicates) => { for p in predicates.iter() { p.walk(f); } } Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {} } f(self); } fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { match self { Ty::Apply(a_ty) => { a_ty.parameters.walk_mut(f); } Ty::Projection(p_ty) => { p_ty.parameters.walk_mut(f); } Ty::Dyn(predicates) | Ty::Opaque(predicates) => { for p in make_mut_slice(predicates) { p.walk_mut(f); } } Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {} } f(self); } } impl HirDisplay for &Ty { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { HirDisplay::hir_fmt(*self, f) } } impl HirDisplay for ApplicationTy { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { match self.ctor { TypeCtor::Bool => write!(f, "bool")?, TypeCtor::Char => write!(f, "char")?, TypeCtor::Int(t) => write!(f, "{}", t)?, TypeCtor::Float(t) => write!(f, "{}", t)?, TypeCtor::Str => write!(f, "str")?, TypeCtor::Slice => { let t = self.parameters.as_single(); write!(f, "[{}]", t.display(f.db))?; } TypeCtor::Array => { let t = self.parameters.as_single(); write!(f, "[{};_]", t.display(f.db))?; } TypeCtor::RawPtr(m) => { let t = self.parameters.as_single(); write!(f, "*{}{}", m.as_keyword_for_ptr(), t.display(f.db))?; } TypeCtor::Ref(m) => { let t = self.parameters.as_single(); write!(f, "&{}{}", m.as_keyword_for_ref(), t.display(f.db))?; } TypeCtor::Never => write!(f, "!")?, TypeCtor::Tuple { .. } => { let ts = &self.parameters; if ts.len() == 1 { write!(f, "({},)", ts[0].display(f.db))?; } else { write!(f, "(")?; f.write_joined(&*ts.0, ", ")?; write!(f, ")")?; } } TypeCtor::FnPtr { .. } => { let sig = FnSig::from_fn_ptr_substs(&self.parameters); write!(f, "fn(")?; f.write_joined(sig.params(), ", ")?; write!(f, ") -> {}", sig.ret().display(f.db))?; } TypeCtor::FnDef(def) => { let sig = f.db.callable_item_signature(def); let name = match def { CallableDef::Function(ff) => ff.name(f.db), CallableDef::Struct(s) => s.name(f.db).unwrap_or_else(Name::missing), CallableDef::EnumVariant(e) => e.name(f.db).unwrap_or_else(Name::missing), }; match def { CallableDef::Function(_) => write!(f, "fn {}", name)?, CallableDef::Struct(_) | CallableDef::EnumVariant(_) => write!(f, "{}", name)?, } if self.parameters.len() > 0 { write!(f, "<")?; f.write_joined(&*self.parameters.0, ", ")?; write!(f, ">")?; } write!(f, "(")?; f.write_joined(sig.params(), ", ")?; write!(f, ") -> {}", sig.ret().display(f.db))?; } TypeCtor::Adt(def_id) => { let name = match def_id { Adt::Struct(s) => s.name(f.db), Adt::Union(u) => u.name(f.db), Adt::Enum(e) => e.name(f.db), } .unwrap_or_else(Name::missing); write!(f, "{}", name)?; if self.parameters.len() > 0 { write!(f, "<")?; f.write_joined(&*self.parameters.0, ", ")?; write!(f, ">")?; } } TypeCtor::AssociatedType(type_alias) => { let trait_name = type_alias .parent_trait(f.db) .and_then(|t| t.name(f.db)) .unwrap_or_else(Name::missing); let name = type_alias.name(f.db); write!(f, "{}::{}", trait_name, name)?; if self.parameters.len() > 0 { write!(f, "<")?; f.write_joined(&*self.parameters.0, ", ")?; write!(f, ">")?; } } TypeCtor::Closure { .. } => { let sig = self.parameters[0] .callable_sig(f.db) .expect("first closure parameter should contain signature"); write!(f, "|")?; f.write_joined(sig.params(), ", ")?; write!(f, "| -> {}", sig.ret().display(f.db))?; } } Ok(()) } } impl HirDisplay for ProjectionTy { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { let trait_name = self .associated_ty .parent_trait(f.db) .and_then(|t| t.name(f.db)) .unwrap_or_else(Name::missing); write!(f, "<{} as {}", self.parameters[0].display(f.db), trait_name,)?; if self.parameters.len() > 1 { write!(f, "<")?; f.write_joined(&self.parameters[1..], ", ")?; write!(f, ">")?; } write!(f, ">::{}", self.associated_ty.name(f.db))?; Ok(()) } } impl HirDisplay for Ty { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { match self { Ty::Apply(a_ty) => a_ty.hir_fmt(f)?, Ty::Projection(p_ty) => p_ty.hir_fmt(f)?, Ty::Param { name, .. } => write!(f, "{}", name)?, Ty::Bound(idx) => write!(f, "?{}", idx)?, Ty::Dyn(predicates) | Ty::Opaque(predicates) => { match self { Ty::Dyn(_) => write!(f, "dyn ")?, Ty::Opaque(_) => write!(f, "impl ")?, _ => unreachable!(), }; // Note: This code is written to produce nice results (i.e. // corresponding to surface Rust) for types that can occur in // actual Rust. It will have weird results if the predicates // aren't as expected (i.e. self types = $0, projection // predicates for a certain trait come after the Implemented // predicate for that trait). let mut first = true; let mut angle_open = false; for p in predicates.iter() { match p { GenericPredicate::Implemented(trait_ref) => { if angle_open { write!(f, ">")?; } if !first { write!(f, " + ")?; } // We assume that the self type is $0 (i.e. the // existential) here, which is the only thing that's // possible in actual Rust, and hence don't print it write!( f, "{}", trait_ref.trait_.name(f.db).unwrap_or_else(Name::missing) )?; if trait_ref.substs.len() > 1 { write!(f, "<")?; f.write_joined(&trait_ref.substs[1..], ", ")?; // there might be assoc type bindings, so we leave the angle brackets open angle_open = true; } } GenericPredicate::Projection(projection_pred) => { // in types in actual Rust, these will always come // after the corresponding Implemented predicate if angle_open { write!(f, ", ")?; } else { write!(f, "<")?; angle_open = true; } let name = projection_pred.projection_ty.associated_ty.name(f.db); write!(f, "{} = ", name)?; projection_pred.ty.hir_fmt(f)?; } GenericPredicate::Error => { if angle_open { // impl Trait write!(f, ", ")?; } else if !first { // impl Trait + {error} write!(f, " + ")?; } p.hir_fmt(f)?; } } first = false; } if angle_open { write!(f, ">")?; } } Ty::Unknown => write!(f, "{{unknown}}")?, Ty::Infer(..) => write!(f, "_")?, } Ok(()) } } impl TraitRef { fn hir_fmt_ext(&self, f: &mut HirFormatter, use_as: bool) -> fmt::Result { self.substs[0].hir_fmt(f)?; if use_as { write!(f, " as ")?; } else { write!(f, ": ")?; } write!(f, "{}", self.trait_.name(f.db).unwrap_or_else(Name::missing))?; if self.substs.len() > 1 { write!(f, "<")?; f.write_joined(&self.substs[1..], ", ")?; write!(f, ">")?; } Ok(()) } } impl HirDisplay for TraitRef { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { self.hir_fmt_ext(f, false) } } impl HirDisplay for &GenericPredicate { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { HirDisplay::hir_fmt(*self, f) } } impl HirDisplay for GenericPredicate { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { match self { GenericPredicate::Implemented(trait_ref) => trait_ref.hir_fmt(f)?, GenericPredicate::Projection(projection_pred) => { write!(f, "<")?; projection_pred.projection_ty.trait_ref(f.db).hir_fmt_ext(f, true)?; write!( f, ">::{} = {}", projection_pred.projection_ty.associated_ty.name(f.db), projection_pred.ty.display(f.db) )?; } GenericPredicate::Error => write!(f, "{{error}}")?, } Ok(()) } } impl HirDisplay for Obligation { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { match self { Obligation::Trait(tr) => write!(f, "Implements({})", tr.display(f.db)), Obligation::Projection(proj) => write!( f, "Normalize({} => {})", proj.projection_ty.display(f.db), proj.ty.display(f.db) ), } } }