//! The type system. We currently use this to infer types for completion. //! //! For type inference, compare the implementations in rustc (the various //! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and //! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for //! inference here is the `infer` function, which infers the types of all //! expressions in a given function. //! //! The central struct here is `Ty`, which represents a type. During inference, //! it can contain type 'variables' which represent currently unknown types; as //! we walk through the expressions, we might determine that certain variables //! need to be equal to each other, or to certain types. To record this, we use //! the union-find implementation from the `ena` crate, which is extracted from //! rustc. mod autoderef; pub(crate) mod primitive; #[cfg(test)] mod tests; pub(crate) mod method_resolution; use std::borrow::Cow; use std::iter::repeat; use std::ops::Index; use std::sync::Arc; use std::{fmt, mem}; use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError}; use ra_arena::map::ArenaMap; use join_to_string::join; use rustc_hash::FxHashMap; use test_utils::tested_by; use crate::{ Function, Struct, StructField, Enum, EnumVariant, Path, Name, FnSignature, ModuleDef, AdtDef, HirDatabase, type_ref::{TypeRef, Mutability}, name::{KnownName}, expr::{Body, Expr, BindingAnnotation, Literal, ExprId, Pat, PatId, UnaryOp, BinaryOp, Statement, FieldPat, self}, generics::GenericParams, path::{ GenericArgs, GenericArg}, adt::VariantDef, resolve::{Resolver, Resolution}, nameres::Namespace }; /// The ID of a type variable. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] pub struct TypeVarId(u32); impl UnifyKey for TypeVarId { type Value = TypeVarValue; fn index(&self) -> u32 { self.0 } fn from_index(i: u32) -> Self { TypeVarId(i) } fn tag() -> &'static str { "TypeVarId" } } /// The value of a type variable: either we already know the type, or we don't /// know it yet. #[derive(Clone, PartialEq, Eq, Debug)] pub enum TypeVarValue { Known(Ty), Unknown, } impl TypeVarValue { fn known(&self) -> Option<&Ty> { match self { TypeVarValue::Known(ty) => Some(ty), TypeVarValue::Unknown => None, } } } impl UnifyValue for TypeVarValue { type Error = NoError; fn unify_values(value1: &Self, value2: &Self) -> Result { match (value1, value2) { // We should never equate two type variables, both of which have // known types. Instead, we recursively equate those types. (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!( "equating two type variables, both of which have known types: {:?} and {:?}", t1, t2 ), // If one side is known, prefer that one. (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()), (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()), (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown), } } } /// The kinds of placeholders we need during type inference. There's separate /// values for general types, and for integer and float variables. The latter /// two are used for inference of literal values (e.g. `100` could be one of /// several integer types). #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub enum InferTy { TypeVar(TypeVarId), IntVar(TypeVarId), FloatVar(TypeVarId), } impl InferTy { fn to_inner(self) -> TypeVarId { match self { InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty, } } fn fallback_value(self) -> Ty { match self { InferTy::TypeVar(..) => Ty::Unknown, InferTy::IntVar(..) => { Ty::Int(primitive::UncertainIntTy::Signed(primitive::IntTy::I32)) } InferTy::FloatVar(..) => { Ty::Float(primitive::UncertainFloatTy::Known(primitive::FloatTy::F64)) } } } } /// When inferring an expression, we propagate downward whatever type hint we /// are able in the form of an `Expectation`. #[derive(Clone, PartialEq, Eq, Debug)] struct Expectation { ty: Ty, // TODO: In some cases, we need to be aware whether the expectation is that // the type match exactly what we passed, or whether it just needs to be // coercible to the expected type. See Expectation::rvalue_hint in rustc. } impl Expectation { /// The expectation that the type of the expression needs to equal the given /// type. fn has_type(ty: Ty) -> Self { Expectation { ty } } /// This expresses no expectation on the type. fn none() -> Self { Expectation { ty: Ty::Unknown } } } /// A list of substitutions for generic parameters. #[derive(Clone, PartialEq, Eq, Debug)] pub struct Substs(Arc<[Ty]>); impl Substs { pub fn empty() -> Substs { Substs(Arc::new([])) } } /// A type. This is based on the `TyKind` enum in rustc (librustc/ty/sty.rs). /// /// This should be cheap to clone. #[derive(Clone, PartialEq, Eq, Debug)] pub enum Ty { /// The primitive boolean type. Written as `bool`. Bool, /// The primitive character type; holds a Unicode scalar value /// (a non-surrogate code point). Written as `char`. Char, /// A primitive integer type. For example, `i32`. Int(primitive::UncertainIntTy), /// A primitive floating-point type. For example, `f64`. Float(primitive::UncertainFloatTy), /// Structures, enumerations and unions. Adt { /// The definition of the struct/enum. def_id: AdtDef, /// The name, for displaying. name: Name, /// Substitutions for the generic parameters of the type. substs: Substs, }, /// The pointee of a string slice. Written as `str`. Str, /// The pointee of an array slice. Written as `[T]`. Slice(Arc), // An array with the given length. Written as `[T; n]`. Array(Arc), /// A raw pointer. Written as `*mut T` or `*const T` RawPtr(Arc, Mutability), /// A reference; a pointer with an associated lifetime. Written as /// `&'a mut T` or `&'a T`. Ref(Arc, Mutability), /// The anonymous type of a function declaration/definition. Each /// function has a unique type, which is output (for a function /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`. /// /// This includes tuple struct / enum variant constructors as well. /// /// For example the type of `bar` here: /// /// ```rust /// fn foo() -> i32 { 1 } /// let bar = foo; // bar: fn() -> i32 {foo} /// ``` FnDef { /// The definition of the function / constructor. def: CallableDef, /// For display name: Name, /// Parameters and return type sig: Arc, /// Substitutions for the generic parameters of the type substs: Substs, }, /// A pointer to a function. Written as `fn() -> i32`. /// /// For example the type of `bar` here: /// /// ```rust /// fn foo() -> i32 { 1 } /// let bar: fn() -> i32 = foo; /// ``` FnPtr(Arc), // rustc has a separate type for each function, which just coerces to the // above function pointer type. Once we implement generics, we will probably // need this as well. // A trait, defined with `dyn Trait`. // Dynamic(), // The anonymous type of a closure. Used to represent the type of // `|a| a`. // Closure(DefId, ClosureSubsts<'tcx>), // The anonymous type of a generator. Used to represent the type of // `|a| yield a`. // Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability), // A type representing the types stored inside a generator. // This should only appear in GeneratorInteriors. // GeneratorWitness(Binder<&'tcx List>>), /// The never type `!`. Never, /// A tuple type. For example, `(i32, bool)`. Tuple(Arc<[Ty]>), // The projection of an associated type. For example, // `>::N`.pub // Projection(ProjectionTy), // Opaque (`impl Trait`) type found in a return type. // Opaque(DefId, Substs), /// A type parameter; for example, `T` in `fn f(x: T) {} Param { /// The index of the parameter (starting with parameters from the /// surrounding impl, then the current function). idx: u32, /// The name of the parameter, for displaying. name: Name, }, /// A type variable used during type checking. Not to be confused with a /// type parameter. Infer(InferTy), /// A placeholder for a type which could not be computed; this is propagated /// to avoid useless error messages. Doubles as a placeholder where type /// variables are inserted before type checking, since we want to try to /// infer a better type here anyway -- for the IDE use case, we want to try /// to infer as much as possible even in the presence of type errors. Unknown, } /// A function signature. #[derive(Clone, PartialEq, Eq, Debug)] pub struct FnSig { input: Vec, output: Ty, } impl Ty { pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self { match type_ref { TypeRef::Never => Ty::Never, TypeRef::Tuple(inner) => { let inner_tys = inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::>(); Ty::Tuple(inner_tys.into()) } TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path), TypeRef::RawPtr(inner, mutability) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::RawPtr(Arc::new(inner_ty), *mutability) } TypeRef::Array(inner) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::Array(Arc::new(inner_ty)) } TypeRef::Slice(inner) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::Slice(Arc::new(inner_ty)) } TypeRef::Reference(inner, mutability) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::Ref(Arc::new(inner_ty), *mutability) } TypeRef::Placeholder => Ty::Unknown, TypeRef::Fn(params) => { let mut inner_tys = params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::>(); let return_ty = inner_tys.pop().expect("TypeRef::Fn should always have at least return type"); let sig = FnSig { input: inner_tys, output: return_ty }; Ty::FnPtr(Arc::new(sig)) } TypeRef::Error => Ty::Unknown, } } pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Self { if let Some(name) = path.as_ident() { // TODO handle primitive type names in resolver as well? if let Some(int_ty) = primitive::UncertainIntTy::from_name(name) { return Ty::Int(int_ty); } else if let Some(float_ty) = primitive::UncertainFloatTy::from_name(name) { return Ty::Float(float_ty); } else if let Some(known) = name.as_known_name() { match known { KnownName::Bool => return Ty::Bool, KnownName::Char => return Ty::Char, KnownName::Str => return Ty::Str, _ => {} } } } // Resolve the path (in type namespace) let resolution = resolver.resolve_path(db, path).take_types(); let def = match resolution { Some(Resolution::Def(def)) => def, Some(Resolution::LocalBinding(..)) => { // this should never happen panic!("path resolved to local binding in type ns"); } Some(Resolution::GenericParam(idx)) => { return Ty::Param { idx, // TODO: maybe return name in resolution? name: path .as_ident() .expect("generic param should be single-segment path") .clone(), }; } Some(Resolution::SelfType(impl_block)) => { return impl_block.target_ty(db); } None => return Ty::Unknown, }; let typable: TypableDef = match def.into() { None => return Ty::Unknown, Some(it) => it, }; let ty = db.type_for_def(typable, Namespace::Types); let substs = Ty::substs_from_path(db, resolver, path, typable); ty.apply_substs(substs) } /// Collect generic arguments from a path into a `Substs`. See also /// `create_substs_for_ast_path` and `def_to_ty` in rustc. fn substs_from_path( db: &impl HirDatabase, resolver: &Resolver, path: &Path, resolved: TypableDef, ) -> Substs { let mut substs = Vec::new(); let last = path.segments.last().expect("path should have at least one segment"); let (def_generics, segment) = match resolved { TypableDef::Function(func) => (func.generic_params(db), last), TypableDef::Struct(s) => (s.generic_params(db), last), TypableDef::Enum(e) => (e.generic_params(db), last), TypableDef::EnumVariant(var) => { // the generic args for an enum variant may be either specified // on the segment referring to the enum, or on the segment // referring to the variant. So `Option::::None` and // `Option::None::` are both allowed (though the former is // preferred). See also `def_ids_for_path_segments` in rustc. let len = path.segments.len(); let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() { // Option::::None &path.segments[len - 2] } else { // Option::None:: last }; (var.parent_enum(db).generic_params(db), segment) } }; let parent_param_count = def_generics.count_parent_params(); substs.extend((0..parent_param_count).map(|_| Ty::Unknown)); if let Some(generic_args) = &segment.args_and_bindings { // if args are provided, it should be all of them, but we can't rely on that let param_count = def_generics.params.len(); for arg in generic_args.args.iter().take(param_count) { match arg { GenericArg::Type(type_ref) => { let ty = Ty::from_hir(db, resolver, type_ref); substs.push(ty); } } } } // add placeholders for args that were not provided // TODO: handle defaults let supplied_params = substs.len(); for _ in supplied_params..def_generics.count_params_including_parent() { substs.push(Ty::Unknown); } assert_eq!(substs.len(), def_generics.count_params_including_parent()); Substs(substs.into()) } pub fn unit() -> Self { Ty::Tuple(Arc::new([])) } pub fn walk(&self, f: &mut impl FnMut(&Ty)) { match self { Ty::Slice(t) | Ty::Array(t) => t.walk(f), Ty::RawPtr(t, _) => t.walk(f), Ty::Ref(t, _) => t.walk(f), Ty::Tuple(ts) => { for t in ts.iter() { t.walk(f); } } Ty::FnPtr(sig) => { for input in &sig.input { input.walk(f); } sig.output.walk(f); } Ty::FnDef { substs, sig, .. } => { for input in &sig.input { input.walk(f); } sig.output.walk(f); for t in substs.0.iter() { t.walk(f); } } Ty::Adt { substs, .. } => { for t in substs.0.iter() { t.walk(f); } } Ty::Bool | Ty::Char | Ty::Int(_) | Ty::Float(_) | Ty::Str | Ty::Never | Ty::Param { .. } | Ty::Infer(_) | Ty::Unknown => {} } f(self); } fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { match self { Ty::Slice(t) | Ty::Array(t) => Arc::make_mut(t).walk_mut(f), Ty::RawPtr(t, _) => Arc::make_mut(t).walk_mut(f), Ty::Ref(t, _) => Arc::make_mut(t).walk_mut(f), Ty::Tuple(ts) => { // Without an Arc::make_mut_slice, we can't avoid the clone here: let mut v: Vec<_> = ts.iter().cloned().collect(); for t in &mut v { t.walk_mut(f); } *ts = v.into(); } Ty::FnPtr(sig) => { let sig_mut = Arc::make_mut(sig); for input in &mut sig_mut.input { input.walk_mut(f); } sig_mut.output.walk_mut(f); } Ty::FnDef { substs, sig, .. } => { let sig_mut = Arc::make_mut(sig); for input in &mut sig_mut.input { input.walk_mut(f); } sig_mut.output.walk_mut(f); // Without an Arc::make_mut_slice, we can't avoid the clone here: let mut v: Vec<_> = substs.0.iter().cloned().collect(); for t in &mut v { t.walk_mut(f); } substs.0 = v.into(); } Ty::Adt { substs, .. } => { // Without an Arc::make_mut_slice, we can't avoid the clone here: let mut v: Vec<_> = substs.0.iter().cloned().collect(); for t in &mut v { t.walk_mut(f); } substs.0 = v.into(); } Ty::Bool | Ty::Char | Ty::Int(_) | Ty::Float(_) | Ty::Str | Ty::Never | Ty::Param { .. } | Ty::Infer(_) | Ty::Unknown => {} } f(self); } fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Ty { self.walk_mut(&mut |ty_mut| { let ty = mem::replace(ty_mut, Ty::Unknown); *ty_mut = f(ty); }); self } fn builtin_deref(&self) -> Option { match self { Ty::Ref(t, _) => Some(Ty::clone(t)), Ty::RawPtr(t, _) => Some(Ty::clone(t)), _ => None, } } /// If this is a type with type parameters (an ADT or function), replaces /// the `Substs` for these type parameters with the given ones. (So e.g. if /// `self` is `Option<_>` and the substs contain `u32`, we'll have /// `Option` afterwards.) pub fn apply_substs(self, substs: Substs) -> Ty { match self { Ty::Adt { def_id, name, .. } => Ty::Adt { def_id, name, substs }, Ty::FnDef { def, name, sig, .. } => Ty::FnDef { def, name, sig, substs }, _ => self, } } /// Replaces type parameters in this type using the given `Substs`. (So e.g. /// if `self` is `&[T]`, where type parameter T has index 0, and the /// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.) pub fn subst(self, substs: &Substs) -> Ty { self.fold(&mut |ty| match ty { Ty::Param { idx, name } => { if (idx as usize) < substs.0.len() { substs.0[idx as usize].clone() } else { // TODO: does this indicate a bug? i.e. should we always // have substs for all type params? (they might contain the // params themselves again...) Ty::Param { idx, name } } } ty => ty, }) } /// Returns the type parameters of this type if it has some (i.e. is an ADT /// or function); so if `self` is `Option`, this returns the `u32`. fn substs(&self) -> Option { match self { Ty::Adt { substs, .. } | Ty::FnDef { substs, .. } => Some(substs.clone()), _ => None, } } } impl fmt::Display for Ty { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { Ty::Bool => write!(f, "bool"), Ty::Char => write!(f, "char"), Ty::Int(t) => write!(f, "{}", t.ty_to_string()), Ty::Float(t) => write!(f, "{}", t.ty_to_string()), Ty::Str => write!(f, "str"), Ty::Slice(t) | Ty::Array(t) => write!(f, "[{}]", t), Ty::RawPtr(t, m) => write!(f, "*{}{}", m.as_keyword_for_ptr(), t), Ty::Ref(t, m) => write!(f, "&{}{}", m.as_keyword_for_ref(), t), Ty::Never => write!(f, "!"), Ty::Tuple(ts) => { if ts.len() == 1 { write!(f, "({},)", ts[0]) } else { join(ts.iter()).surround_with("(", ")").separator(", ").to_fmt(f) } } Ty::FnPtr(sig) => { join(sig.input.iter()).surround_with("fn(", ")").separator(", ").to_fmt(f)?; write!(f, " -> {}", sig.output) } Ty::FnDef { def, name, substs, sig, .. } => { match def { CallableDef::Function(_) => write!(f, "fn {}", name)?, CallableDef::Struct(_) | CallableDef::EnumVariant(_) => write!(f, "{}", name)?, } if substs.0.len() > 0 { join(substs.0.iter()).surround_with("<", ">").separator(", ").to_fmt(f)?; } join(sig.input.iter()).surround_with("(", ")").separator(", ").to_fmt(f)?; write!(f, " -> {}", sig.output) } Ty::Adt { name, substs, .. } => { write!(f, "{}", name)?; if substs.0.len() > 0 { join(substs.0.iter()).surround_with("<", ">").separator(", ").to_fmt(f)?; } Ok(()) } Ty::Param { name, .. } => write!(f, "{}", name), Ty::Unknown => write!(f, "[unknown]"), Ty::Infer(..) => write!(f, "_"), } } } // Functions returning declared types for items /// Compute the declared type of a function. This should not need to look at the /// function body. fn type_for_fn(db: &impl HirDatabase, def: Function) -> Ty { let signature = def.signature(db); let resolver = def.resolver(db); let generics = def.generic_params(db); let name = def.name(db); let input = signature.params().iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::>(); let output = Ty::from_hir(db, &resolver, signature.ret_type()); let sig = Arc::new(FnSig { input, output }); let substs = make_substs(&generics); Ty::FnDef { def: def.into(), sig, name, substs } } /// Compute the type of a tuple struct constructor. fn type_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> Ty { let var_data = def.variant_data(db); let fields = match var_data.fields() { Some(fields) => fields, None => return type_for_struct(db, def), // Unit struct }; let resolver = def.resolver(db); let generics = def.generic_params(db); let name = def.name(db).unwrap_or_else(Name::missing); let input = fields .iter() .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref)) .collect::>(); let output = type_for_struct(db, def); let sig = Arc::new(FnSig { input, output }); let substs = make_substs(&generics); Ty::FnDef { def: def.into(), sig, name, substs } } /// Compute the type of a tuple enum variant constructor. fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> Ty { let var_data = def.variant_data(db); let fields = match var_data.fields() { Some(fields) => fields, None => return type_for_enum(db, def.parent_enum(db)), // Unit variant }; let resolver = def.parent_enum(db).resolver(db); let generics = def.parent_enum(db).generic_params(db); let name = def.name(db).unwrap_or_else(Name::missing); let input = fields .iter() .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref)) .collect::>(); let substs = make_substs(&generics); let output = type_for_enum(db, def.parent_enum(db)).apply_substs(substs.clone()); let sig = Arc::new(FnSig { input, output }); Ty::FnDef { def: def.into(), sig, name, substs } } fn make_substs(generics: &GenericParams) -> Substs { Substs( generics .params_including_parent() .into_iter() .map(|p| Ty::Param { idx: p.idx, name: p.name.clone() }) .collect::>() .into(), ) } fn type_for_struct(db: &impl HirDatabase, s: Struct) -> Ty { let generics = s.generic_params(db); Ty::Adt { def_id: s.into(), name: s.name(db).unwrap_or_else(Name::missing), substs: make_substs(&generics), } } fn type_for_enum(db: &impl HirDatabase, s: Enum) -> Ty { let generics = s.generic_params(db); Ty::Adt { def_id: s.into(), name: s.name(db).unwrap_or_else(Name::missing), substs: make_substs(&generics), } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum TypableDef { Function(Function), Struct(Struct), Enum(Enum), EnumVariant(EnumVariant), } impl_froms!(TypableDef: Function, Struct, Enum, EnumVariant); impl From for Option { fn from(def: ModuleDef) -> Option { let res = match def { ModuleDef::Function(f) => f.into(), ModuleDef::Struct(s) => s.into(), ModuleDef::Enum(e) => e.into(), ModuleDef::EnumVariant(v) => v.into(), ModuleDef::Const(_) | ModuleDef::Static(_) | ModuleDef::Module(_) | ModuleDef::Trait(_) | ModuleDef::Type(_) => return None, }; Some(res) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum CallableDef { Function(Function), Struct(Struct), EnumVariant(EnumVariant), } impl_froms!(CallableDef: Function, Struct, EnumVariant); pub(super) fn type_for_def(db: &impl HirDatabase, def: TypableDef, ns: Namespace) -> Ty { match (def, ns) { (TypableDef::Function(f), Namespace::Values) => type_for_fn(db, f), (TypableDef::Struct(s), Namespace::Types) => type_for_struct(db, s), (TypableDef::Struct(s), Namespace::Values) => type_for_struct_constructor(db, s), (TypableDef::Enum(e), Namespace::Types) => type_for_enum(db, e), (TypableDef::EnumVariant(v), Namespace::Values) => type_for_enum_variant_constructor(db, v), // 'error' cases: (TypableDef::Function(_), Namespace::Types) => Ty::Unknown, (TypableDef::Enum(_), Namespace::Values) => Ty::Unknown, (TypableDef::EnumVariant(_), Namespace::Types) => Ty::Unknown, } } pub(super) fn type_for_field(db: &impl HirDatabase, field: StructField) -> Ty { let parent_def = field.parent_def(db); let resolver = match parent_def { VariantDef::Struct(it) => it.resolver(db), VariantDef::EnumVariant(it) => it.parent_enum(db).resolver(db), }; let var_data = parent_def.variant_data(db); let type_ref = &var_data.fields().unwrap()[field.id].type_ref; Ty::from_hir(db, &resolver, type_ref) } /// The result of type inference: A mapping from expressions and patterns to types. #[derive(Clone, PartialEq, Eq, Debug)] pub struct InferenceResult { /// For each method call expr, records the function it resolves to. method_resolutions: FxHashMap, /// For each field access expr, records the field it resolves to. field_resolutions: FxHashMap, type_of_expr: ArenaMap, type_of_pat: ArenaMap, } impl InferenceResult { pub fn method_resolution(&self, expr: ExprId) -> Option { self.method_resolutions.get(&expr).map(|it| *it) } pub fn field_resolution(&self, expr: ExprId) -> Option { self.field_resolutions.get(&expr).map(|it| *it) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, expr: ExprId) -> &Ty { self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, pat: PatId) -> &Ty { self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown) } } /// The inference context contains all information needed during type inference. #[derive(Clone, Debug)] struct InferenceContext<'a, D: HirDatabase> { db: &'a D, body: Arc, resolver: Resolver, var_unification_table: InPlaceUnificationTable, method_resolutions: FxHashMap, field_resolutions: FxHashMap, type_of_expr: ArenaMap, type_of_pat: ArenaMap, /// The return type of the function being inferred. return_ty: Ty, } fn binary_op_return_ty(op: BinaryOp, rhs_ty: Ty) -> Ty { match op { BinaryOp::BooleanOr | BinaryOp::BooleanAnd | BinaryOp::EqualityTest | BinaryOp::NegatedEqualityTest | BinaryOp::LesserEqualTest | BinaryOp::GreaterEqualTest | BinaryOp::LesserTest | BinaryOp::GreaterTest => Ty::Bool, BinaryOp::Assignment | BinaryOp::AddAssign | BinaryOp::SubAssign | BinaryOp::DivAssign | BinaryOp::MulAssign | BinaryOp::RemAssign | BinaryOp::ShrAssign | BinaryOp::ShlAssign | BinaryOp::BitAndAssign | BinaryOp::BitOrAssign | BinaryOp::BitXorAssign => Ty::unit(), BinaryOp::Addition | BinaryOp::Subtraction | BinaryOp::Multiplication | BinaryOp::Division | BinaryOp::Remainder | BinaryOp::LeftShift | BinaryOp::RightShift | BinaryOp::BitwiseAnd | BinaryOp::BitwiseOr | BinaryOp::BitwiseXor => match rhs_ty { Ty::Int(..) | Ty::Float(..) | Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => rhs_ty, _ => Ty::Unknown, }, BinaryOp::RangeRightOpen | BinaryOp::RangeRightClosed => Ty::Unknown, } } fn binary_op_rhs_expectation(op: BinaryOp, lhs_ty: Ty) -> Ty { match op { BinaryOp::BooleanAnd | BinaryOp::BooleanOr => Ty::Bool, BinaryOp::Assignment | BinaryOp::EqualityTest => match lhs_ty { Ty::Int(..) | Ty::Float(..) | Ty::Str | Ty::Char | Ty::Bool => lhs_ty, _ => Ty::Unknown, }, BinaryOp::LesserEqualTest | BinaryOp::GreaterEqualTest | BinaryOp::LesserTest | BinaryOp::GreaterTest | BinaryOp::AddAssign | BinaryOp::SubAssign | BinaryOp::DivAssign | BinaryOp::MulAssign | BinaryOp::RemAssign | BinaryOp::ShrAssign | BinaryOp::ShlAssign | BinaryOp::BitAndAssign | BinaryOp::BitOrAssign | BinaryOp::BitXorAssign | BinaryOp::Addition | BinaryOp::Subtraction | BinaryOp::Multiplication | BinaryOp::Division | BinaryOp::Remainder | BinaryOp::LeftShift | BinaryOp::RightShift | BinaryOp::BitwiseAnd | BinaryOp::BitwiseOr | BinaryOp::BitwiseXor => match lhs_ty { Ty::Int(..) | Ty::Float(..) => lhs_ty, _ => Ty::Unknown, }, _ => Ty::Unknown, } } impl<'a, D: HirDatabase> InferenceContext<'a, D> { fn new(db: &'a D, body: Arc, resolver: Resolver) -> Self { InferenceContext { method_resolutions: FxHashMap::default(), field_resolutions: FxHashMap::default(), type_of_expr: ArenaMap::default(), type_of_pat: ArenaMap::default(), var_unification_table: InPlaceUnificationTable::new(), return_ty: Ty::Unknown, // set in collect_fn_signature db, body, resolver, } } fn resolve_all(mut self) -> InferenceResult { let mut tv_stack = Vec::new(); let mut expr_types = mem::replace(&mut self.type_of_expr, ArenaMap::default()); for ty in expr_types.values_mut() { let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown)); *ty = resolved; } let mut pat_types = mem::replace(&mut self.type_of_pat, ArenaMap::default()); for ty in pat_types.values_mut() { let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown)); *ty = resolved; } InferenceResult { method_resolutions: self.method_resolutions, field_resolutions: self.field_resolutions, type_of_expr: expr_types, type_of_pat: pat_types, } } fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) { self.type_of_expr.insert(expr, ty); } fn write_method_resolution(&mut self, expr: ExprId, func: Function) { self.method_resolutions.insert(expr, func); } fn write_field_resolution(&mut self, expr: ExprId, field: StructField) { self.field_resolutions.insert(expr, field); } fn write_pat_ty(&mut self, pat: PatId, ty: Ty) { self.type_of_pat.insert(pat, ty); } fn make_ty(&mut self, type_ref: &TypeRef) -> Ty { let ty = Ty::from_hir( self.db, // TODO use right resolver for block &self.resolver, type_ref, ); let ty = self.insert_type_vars(ty); ty } fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool { substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth)) } fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { self.unify_inner(ty1, ty2, 0) } fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool { if depth > 1000 { // prevent stackoverflows panic!("infinite recursion in unification"); } if ty1 == ty2 { return true; } // try to resolve type vars first let ty1 = self.resolve_ty_shallow(ty1); let ty2 = self.resolve_ty_shallow(ty2); match (&*ty1, &*ty2) { (Ty::Unknown, ..) => true, (.., Ty::Unknown) => true, (Ty::Int(t1), Ty::Int(t2)) => match (t1, t2) { (primitive::UncertainIntTy::Unknown, _) | (_, primitive::UncertainIntTy::Unknown) => true, _ => t1 == t2, }, (Ty::Float(t1), Ty::Float(t2)) => match (t1, t2) { (primitive::UncertainFloatTy::Unknown, _) | (_, primitive::UncertainFloatTy::Unknown) => true, _ => t1 == t2, }, (Ty::Bool, _) | (Ty::Str, _) | (Ty::Never, _) | (Ty::Char, _) => ty1 == ty2, ( Ty::Adt { def_id: def_id1, substs: substs1, .. }, Ty::Adt { def_id: def_id2, substs: substs2, .. }, ) if def_id1 == def_id2 => self.unify_substs(substs1, substs2, depth + 1), (Ty::Slice(t1), Ty::Slice(t2)) => self.unify_inner(t1, t2, depth + 1), (Ty::RawPtr(t1, m1), Ty::RawPtr(t2, m2)) if m1 == m2 => { self.unify_inner(t1, t2, depth + 1) } (Ty::Ref(t1, m1), Ty::Ref(t2, m2)) if m1 == m2 => self.unify_inner(t1, t2, depth + 1), (Ty::FnPtr(sig1), Ty::FnPtr(sig2)) if sig1 == sig2 => true, (Ty::Tuple(ts1), Ty::Tuple(ts2)) if ts1.len() == ts2.len() => { ts1.iter().zip(ts2.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth + 1)) } (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2))) | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2))) | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => { // both type vars are unknown since we tried to resolve them self.var_unification_table.union(*tv1, *tv2); true } (Ty::Infer(InferTy::TypeVar(tv)), other) | (other, Ty::Infer(InferTy::TypeVar(tv))) | (Ty::Infer(InferTy::IntVar(tv)), other) | (other, Ty::Infer(InferTy::IntVar(tv))) | (Ty::Infer(InferTy::FloatVar(tv)), other) | (other, Ty::Infer(InferTy::FloatVar(tv))) => { // the type var is unknown since we tried to resolve it self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone())); true } _ => false, } } fn new_type_var(&mut self) -> Ty { Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } fn new_integer_var(&mut self) -> Ty { Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } fn new_float_var(&mut self) -> Ty { Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it. fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty { match ty { Ty::Unknown => self.new_type_var(), Ty::Int(primitive::UncertainIntTy::Unknown) => self.new_integer_var(), Ty::Float(primitive::UncertainFloatTy::Unknown) => self.new_float_var(), _ => ty, } } fn insert_type_vars(&mut self, ty: Ty) -> Ty { ty.fold(&mut |ty| self.insert_type_vars_shallow(ty)) } /// Resolves the type as far as currently possible, replacing type variables /// by their known types. All types returned by the infer_* functions should /// be resolved as far as possible, i.e. contain no type variables with /// known type. fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { tested_by!(type_var_cycles_resolve_as_possible); // recursive type return tv.fallback_value(); } if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { ty } } _ => ty, }) } /// If `ty` is a type variable with known type, returns that type; /// otherwise, return ty. fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> { let mut ty = Cow::Borrowed(ty); // The type variable could resolve to a int/float variable. Hence try // resolving up to three times; each type of variable shouldn't occur // more than once for i in 0..3 { if i > 0 { tested_by!(type_var_resolves_to_int_var); } match &*ty { Ty::Infer(tv) => { let inner = tv.to_inner(); match self.var_unification_table.probe_value(inner).known() { Some(known_ty) => { // The known_ty can't be a type var itself ty = Cow::Owned(known_ty.clone()); } _ => return ty, } } _ => return ty, } } log::error!("Inference variable still not resolved: {:?}", ty); ty } /// Resolves the type completely; type variables without known type are /// replaced by Ty::Unknown. fn resolve_ty_completely(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { tested_by!(type_var_cycles_resolve_completely); // recursive type return tv.fallback_value(); } if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_completely(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { tv.fallback_value() } } _ => ty, }) } fn infer_path_expr(&mut self, resolver: &Resolver, path: &Path) -> Option { let resolved = resolver.resolve_path_segments(self.db, &path); let (def, remaining_index) = resolved.into_inner(); // if the remaining_index is None, we expect the path // to be fully resolved, in this case we continue with // the default by attempting to `take_values´ from the resolution. // Otherwise the path was partially resolved, which means // we might have resolved into a type for which // we may find some associated item starting at the // path.segment pointed to by `remaining_index´ let resolved = if remaining_index.is_none() { def.take_values()? } else { def.take_types()? }; match resolved { Resolution::Def(def) => { let typable: Option = def.into(); let typable = typable?; if let Some(remaining_index) = remaining_index { let ty = self.db.type_for_def(typable, Namespace::Types); // TODO: Keep resolving the segments // if we have more segments to process let segment = &path.segments[remaining_index]; // Attempt to find an impl_item for the type which has a name matching // the current segment let ty = ty.iterate_impl_items(self.db, |item| match item { crate::ImplItem::Method(func) => { let sig = func.signature(self.db); if segment.name == *sig.name() { return Some(type_for_fn(self.db, func)); } None } // TODO: Resolve associated const crate::ImplItem::Const(_) => None, // TODO: Resolve associated types crate::ImplItem::Type(_) => None, }); ty } else { let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable); let ty = self.db.type_for_def(typable, Namespace::Values).apply_substs(substs); let ty = self.insert_type_vars(ty); Some(ty) } } Resolution::LocalBinding(pat) => { let ty = self.type_of_pat.get(pat)?; let ty = self.resolve_ty_as_possible(&mut vec![], ty.clone()); Some(ty) } Resolution::GenericParam(..) => { // generic params can't refer to values... yet None } Resolution::SelfType(_) => { log::error!("path expr {:?} resolved to Self type in values ns", path); None } } } fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option) { let path = match path { Some(path) => path, None => return (Ty::Unknown, None), }; let resolver = &self.resolver; let typable: Option = match resolver.resolve_path(self.db, &path).take_types() { Some(Resolution::Def(def)) => def.into(), Some(Resolution::LocalBinding(..)) => { // this cannot happen log::error!("path resolved to local binding in type ns"); return (Ty::Unknown, None); } Some(Resolution::GenericParam(..)) => { // generic params can't be used in struct literals return (Ty::Unknown, None); } Some(Resolution::SelfType(..)) => { // TODO this is allowed in an impl for a struct, handle this return (Ty::Unknown, None); } None => return (Ty::Unknown, None), }; let def = match typable { None => return (Ty::Unknown, None), Some(it) => it, }; // TODO remove the duplication between here and `Ty::from_path`? let substs = Ty::substs_from_path(self.db, resolver, path, def); match def { TypableDef::Struct(s) => { let ty = s.ty(self.db); let ty = self.insert_type_vars(ty.apply_substs(substs)); (ty, Some(s.into())) } TypableDef::EnumVariant(var) => { let ty = var.parent_enum(self.db).ty(self.db); let ty = self.insert_type_vars(ty.apply_substs(substs)); (ty, Some(var.into())) } TypableDef::Function(_) | TypableDef::Enum(_) => (Ty::Unknown, None), } } fn infer_tuple_struct_pat( &mut self, path: Option<&Path>, subpats: &[PatId], expected: &Ty, ) -> Ty { let (ty, def) = self.resolve_variant(path); self.unify(&ty, expected); let substs = ty.substs().unwrap_or_else(Substs::empty); for (i, &subpat) in subpats.iter().enumerate() { let expected_ty = def .and_then(|d| d.field(self.db, &Name::tuple_field_name(i))) .map_or(Ty::Unknown, |field| field.ty(self.db)) .subst(&substs); self.infer_pat(subpat, &expected_ty); } ty } fn infer_struct_pat(&mut self, path: Option<&Path>, subpats: &[FieldPat], expected: &Ty) -> Ty { let (ty, def) = self.resolve_variant(path); self.unify(&ty, expected); let substs = ty.substs().unwrap_or_else(Substs::empty); for subpat in subpats { let matching_field = def.and_then(|it| it.field(self.db, &subpat.name)); let expected_ty = matching_field.map_or(Ty::Unknown, |field| field.ty(self.db)).subst(&substs); self.infer_pat(subpat.pat, &expected_ty); } ty } fn infer_pat(&mut self, pat: PatId, expected: &Ty) -> Ty { let body = Arc::clone(&self.body); // avoid borrow checker problem let ty = match &body[pat] { Pat::Tuple(ref args) => { let expectations = match *expected { Ty::Tuple(ref tuple_args) => &**tuple_args, _ => &[], }; let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown)); let inner_tys = args .iter() .zip(expectations_iter) .map(|(&pat, ty)| self.infer_pat(pat, ty)) .collect::>() .into(); Ty::Tuple(inner_tys) } Pat::Ref { pat, mutability } => { let expectation = match *expected { Ty::Ref(ref sub_ty, exp_mut) => { if *mutability != exp_mut { // TODO: emit type error? } &**sub_ty } _ => &Ty::Unknown, }; let subty = self.infer_pat(*pat, expectation); Ty::Ref(subty.into(), *mutability) } Pat::TupleStruct { path: ref p, args: ref subpats } => { self.infer_tuple_struct_pat(p.as_ref(), subpats, expected) } Pat::Struct { path: ref p, args: ref fields } => { self.infer_struct_pat(p.as_ref(), fields, expected) } Pat::Path(path) => { // TODO use correct resolver for the surrounding expression let resolver = self.resolver.clone(); self.infer_path_expr(&resolver, &path).unwrap_or(Ty::Unknown) } Pat::Bind { mode, name: _name, subpat } => { let inner_ty = if let Some(subpat) = subpat { self.infer_pat(*subpat, expected) } else { expected.clone() }; let inner_ty = self.insert_type_vars_shallow(inner_ty); let bound_ty = match mode { BindingAnnotation::Ref => Ty::Ref(inner_ty.clone().into(), Mutability::Shared), BindingAnnotation::RefMut => Ty::Ref(inner_ty.clone().into(), Mutability::Mut), BindingAnnotation::Mutable | BindingAnnotation::Unannotated => inner_ty.clone(), }; let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty); self.write_pat_ty(pat, bound_ty); return inner_ty; } _ => Ty::Unknown, }; // use a new type variable if we got Ty::Unknown here let ty = self.insert_type_vars_shallow(ty); self.unify(&ty, expected); let ty = self.resolve_ty_as_possible(&mut vec![], ty); self.write_pat_ty(pat, ty.clone()); ty } fn substs_for_method_call( &mut self, def_generics: Option>, generic_args: &Option, ) -> Substs { let (parent_param_count, param_count) = def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len())); let mut substs = Vec::with_capacity(parent_param_count + param_count); for _ in 0..parent_param_count { substs.push(Ty::Unknown); } // handle provided type arguments if let Some(generic_args) = generic_args { // if args are provided, it should be all of them, but we can't rely on that for arg in generic_args.args.iter().take(param_count) { match arg { GenericArg::Type(type_ref) => { let ty = self.make_ty(type_ref); substs.push(ty); } } } }; let supplied_params = substs.len(); for _ in supplied_params..parent_param_count + param_count { substs.push(Ty::Unknown); } assert_eq!(substs.len(), parent_param_count + param_count); Substs(substs.into()) } fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty { let body = Arc::clone(&self.body); // avoid borrow checker problem let ty = match &body[tgt_expr] { Expr::Missing => Ty::Unknown, Expr::If { condition, then_branch, else_branch } => { // if let is desugared to match, so this is always simple if self.infer_expr(*condition, &Expectation::has_type(Ty::Bool)); let then_ty = self.infer_expr(*then_branch, expected); match else_branch { Some(else_branch) => { self.infer_expr(*else_branch, expected); } None => { // no else branch -> unit self.unify(&then_ty, &Ty::unit()); // actually coerce } }; then_ty } Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected), Expr::Loop { body } => { self.infer_expr(*body, &Expectation::has_type(Ty::unit())); // TODO handle break with value Ty::Never } Expr::While { condition, body } => { // while let is desugared to a match loop, so this is always simple while self.infer_expr(*condition, &Expectation::has_type(Ty::Bool)); self.infer_expr(*body, &Expectation::has_type(Ty::unit())); Ty::unit() } Expr::For { iterable, body, pat } => { let _iterable_ty = self.infer_expr(*iterable, &Expectation::none()); self.infer_pat(*pat, &Ty::Unknown); self.infer_expr(*body, &Expectation::has_type(Ty::unit())); Ty::unit() } Expr::Lambda { body, args, arg_types } => { assert_eq!(args.len(), arg_types.len()); for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) { let expected = if let Some(type_ref) = arg_type { let ty = self.make_ty(type_ref); ty } else { Ty::Unknown }; self.infer_pat(*arg_pat, &expected); } // TODO: infer lambda type etc. let _body_ty = self.infer_expr(*body, &Expectation::none()); Ty::Unknown } Expr::Call { callee, args } => { let callee_ty = self.infer_expr(*callee, &Expectation::none()); let (param_tys, ret_ty) = match &callee_ty { Ty::FnPtr(sig) => (sig.input.clone(), sig.output.clone()), Ty::FnDef { substs, sig, .. } => { let ret_ty = sig.output.clone().subst(&substs); let param_tys = sig.input.iter().map(|ty| ty.clone().subst(&substs)).collect(); (param_tys, ret_ty) } _ => { // not callable // TODO report an error? (Vec::new(), Ty::Unknown) } }; let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown)); for (arg, param) in args.iter().zip(param_iter) { self.infer_expr(*arg, &Expectation::has_type(param)); } ret_ty } Expr::MethodCall { receiver, args, method_name, generic_args } => { let receiver_ty = self.infer_expr(*receiver, &Expectation::none()); let resolved = receiver_ty.clone().lookup_method(self.db, method_name); let (derefed_receiver_ty, method_ty, def_generics) = match resolved { Some((ty, func)) => { self.write_method_resolution(tgt_expr, func); ( ty, self.db.type_for_def(func.into(), Namespace::Values), Some(func.generic_params(self.db)), ) } None => (Ty::Unknown, receiver_ty, None), }; let substs = self.substs_for_method_call(def_generics, generic_args); let method_ty = method_ty.apply_substs(substs); let method_ty = self.insert_type_vars(method_ty); let (expected_receiver_ty, param_tys, ret_ty) = match &method_ty { Ty::FnPtr(sig) => { if !sig.input.is_empty() { (sig.input[0].clone(), sig.input[1..].to_vec(), sig.output.clone()) } else { (Ty::Unknown, Vec::new(), sig.output.clone()) } } Ty::FnDef { substs, sig, .. } => { let ret_ty = sig.output.clone().subst(&substs); if !sig.input.is_empty() { let mut arg_iter = sig.input.iter().map(|ty| ty.clone().subst(&substs)); let receiver_ty = arg_iter.next().unwrap(); (receiver_ty, arg_iter.collect(), ret_ty) } else { (Ty::Unknown, Vec::new(), ret_ty) } } _ => (Ty::Unknown, Vec::new(), Ty::Unknown), }; // Apply autoref so the below unification works correctly let actual_receiver_ty = match expected_receiver_ty { Ty::Ref(_, mutability) => Ty::Ref(Arc::new(derefed_receiver_ty), mutability), _ => derefed_receiver_ty, }; self.unify(&expected_receiver_ty, &actual_receiver_ty); let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown)); for (arg, param) in args.iter().zip(param_iter) { self.infer_expr(*arg, &Expectation::has_type(param)); } ret_ty } Expr::Match { expr, arms } => { let expected = if expected.ty == Ty::Unknown { Expectation::has_type(self.new_type_var()) } else { expected.clone() }; let input_ty = self.infer_expr(*expr, &Expectation::none()); for arm in arms { for &pat in &arm.pats { let _pat_ty = self.infer_pat(pat, &input_ty); } if let Some(guard_expr) = arm.guard { self.infer_expr(guard_expr, &Expectation::has_type(Ty::Bool)); } self.infer_expr(arm.expr, &expected); } expected.ty } Expr::Path(p) => { // TODO this could be more efficient... let resolver = expr::resolver_for_expr(self.body.clone(), self.db, tgt_expr); self.infer_path_expr(&resolver, p).unwrap_or(Ty::Unknown) } Expr::Continue => Ty::Never, Expr::Break { expr } => { if let Some(expr) = expr { // TODO handle break with value self.infer_expr(*expr, &Expectation::none()); } Ty::Never } Expr::Return { expr } => { if let Some(expr) = expr { self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone())); } Ty::Never } Expr::StructLit { path, fields, spread } => { let (ty, def_id) = self.resolve_variant(path.as_ref()); let substs = ty.substs().unwrap_or_else(Substs::empty); for field in fields { let field_ty = def_id .and_then(|it| it.field(self.db, &field.name)) .map_or(Ty::Unknown, |field| field.ty(self.db)) .subst(&substs); self.infer_expr(field.expr, &Expectation::has_type(field_ty)); } if let Some(expr) = spread { self.infer_expr(*expr, &Expectation::has_type(ty.clone())); } ty } Expr::Field { expr, name } => { let receiver_ty = self.infer_expr(*expr, &Expectation::none()); let ty = receiver_ty .autoderef(self.db) .find_map(|derefed_ty| match derefed_ty { Ty::Tuple(fields) => { let i = name.to_string().parse::().ok(); i.and_then(|i| fields.get(i).cloned()) } Ty::Adt { def_id: AdtDef::Struct(s), ref substs, .. } => { s.field(self.db, name).map(|field| { self.write_field_resolution(tgt_expr, field); field.ty(self.db).subst(substs) }) } _ => None, }) .unwrap_or(Ty::Unknown); self.insert_type_vars(ty) } Expr::Try { expr } => { let _inner_ty = self.infer_expr(*expr, &Expectation::none()); Ty::Unknown } Expr::Cast { expr, type_ref } => { let _inner_ty = self.infer_expr(*expr, &Expectation::none()); let cast_ty = self.make_ty(type_ref); // TODO check the cast... cast_ty } Expr::Ref { expr, mutability } => { let expectation = if let Ty::Ref(ref subty, expected_mutability) = expected.ty { if expected_mutability == Mutability::Mut && *mutability == Mutability::Shared { // TODO: throw type error - expected mut reference but found shared ref, // which cannot be coerced } Expectation::has_type((**subty).clone()) } else { Expectation::none() }; // TODO reference coercions etc. let inner_ty = self.infer_expr(*expr, &expectation); Ty::Ref(Arc::new(inner_ty), *mutability) } Expr::UnaryOp { expr, op } => { let inner_ty = self.infer_expr(*expr, &Expectation::none()); match op { UnaryOp::Deref => { if let Some(derefed_ty) = inner_ty.builtin_deref() { derefed_ty } else { // TODO Deref::deref Ty::Unknown } } UnaryOp::Neg => { match inner_ty { Ty::Int(primitive::UncertainIntTy::Unknown) | Ty::Int(primitive::UncertainIntTy::Signed(..)) | Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) | Ty::Float(..) => inner_ty, // TODO: resolve ops::Neg trait _ => Ty::Unknown, } } UnaryOp::Not => { match inner_ty { Ty::Bool | Ty::Int(_) | Ty::Infer(InferTy::IntVar(..)) => inner_ty, // TODO: resolve ops::Not trait for inner_ty _ => Ty::Unknown, } } } } Expr::BinaryOp { lhs, rhs, op } => match op { Some(op) => { let lhs_expectation = match op { BinaryOp::BooleanAnd | BinaryOp::BooleanOr => { Expectation::has_type(Ty::Bool) } _ => Expectation::none(), }; let lhs_ty = self.infer_expr(*lhs, &lhs_expectation); // TODO: find implementation of trait corresponding to operation // symbol and resolve associated `Output` type let rhs_expectation = binary_op_rhs_expectation(*op, lhs_ty); let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation)); // TODO: similar as above, return ty is often associated trait type binary_op_return_ty(*op, rhs_ty) } _ => Ty::Unknown, }, Expr::Tuple { exprs } => { let mut ty_vec = Vec::with_capacity(exprs.len()); for arg in exprs.iter() { ty_vec.push(self.infer_expr(*arg, &Expectation::none())); } Ty::Tuple(Arc::from(ty_vec)) } Expr::Array { exprs } => { let elem_ty = match &expected.ty { Ty::Slice(inner) | Ty::Array(inner) => Ty::clone(&inner), _ => self.new_type_var(), }; for expr in exprs.iter() { self.infer_expr(*expr, &Expectation::has_type(elem_ty.clone())); } Ty::Array(Arc::new(elem_ty)) } Expr::Literal(lit) => match lit { Literal::Bool(..) => Ty::Bool, Literal::String(..) => Ty::Ref(Arc::new(Ty::Str), Mutability::Shared), Literal::ByteString(..) => { let byte_type = Arc::new(Ty::Int(primitive::UncertainIntTy::Unsigned( primitive::UintTy::U8, ))); let slice_type = Arc::new(Ty::Slice(byte_type)); Ty::Ref(slice_type, Mutability::Shared) } Literal::Char(..) => Ty::Char, Literal::Int(_v, ty) => Ty::Int(*ty), Literal::Float(_v, ty) => Ty::Float(*ty), }, }; // use a new type variable if we got Ty::Unknown here let ty = self.insert_type_vars_shallow(ty); self.unify(&ty, &expected.ty); let ty = self.resolve_ty_as_possible(&mut vec![], ty); self.write_expr_ty(tgt_expr, ty.clone()); ty } fn infer_block( &mut self, statements: &[Statement], tail: Option, expected: &Expectation, ) -> Ty { for stmt in statements { match stmt { Statement::Let { pat, type_ref, initializer } => { let decl_ty = type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown); let decl_ty = self.insert_type_vars(decl_ty); let ty = if let Some(expr) = initializer { let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty)); expr_ty } else { decl_ty }; self.infer_pat(*pat, &ty); } Statement::Expr(expr) => { self.infer_expr(*expr, &Expectation::none()); } } } let ty = if let Some(expr) = tail { self.infer_expr(expr, expected) } else { Ty::unit() }; ty } fn collect_fn_signature(&mut self, signature: &FnSignature) { let body = Arc::clone(&self.body); // avoid borrow checker problem for (type_ref, pat) in signature.params().iter().zip(body.params()) { let ty = self.make_ty(type_ref); self.infer_pat(*pat, &ty); } self.return_ty = self.make_ty(signature.ret_type()); } fn infer_body(&mut self) { self.infer_expr(self.body.body_expr(), &Expectation::has_type(self.return_ty.clone())); } } pub fn infer(db: &impl HirDatabase, func: Function) -> Arc { db.check_canceled(); let body = func.body(db); let resolver = func.resolver(db); let mut ctx = InferenceContext::new(db, body, resolver); let signature = func.signature(db); ctx.collect_fn_signature(&signature); ctx.infer_body(); Arc::new(ctx.resolve_all()) }