//! The type system. We currently use this to infer types for completion, hover //! information and various assists. mod autoderef; pub(crate) mod primitive; #[cfg(test)] mod tests; pub(crate) mod traits; pub(crate) mod method_resolution; mod op; mod lower; mod infer; pub(crate) mod display; use std::sync::Arc; use std::ops::Deref; use std::{fmt, mem}; use crate::{Name, AdtDef, type_ref::Mutability, db::HirDatabase, Trait, GenericParams}; use display::{HirDisplay, HirFormatter}; pub(crate) use lower::{TypableDef, type_for_def, type_for_field, callable_item_sig, generic_predicates, generic_defaults}; pub(crate) use infer::{infer_query, InferenceResult, InferTy}; pub use lower::CallableDef; /// A type constructor or type name: this might be something like the primitive /// type `bool`, a struct like `Vec`, or things like function pointers or /// tuples. #[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)] pub enum TypeCtor { /// The primitive boolean type. Written as `bool`. Bool, /// The primitive character type; holds a Unicode scalar value /// (a non-surrogate code point). Written as `char`. Char, /// A primitive integer type. For example, `i32`. Int(primitive::UncertainIntTy), /// A primitive floating-point type. For example, `f64`. Float(primitive::UncertainFloatTy), /// Structures, enumerations and unions. Adt(AdtDef), /// The pointee of a string slice. Written as `str`. Str, /// The pointee of an array slice. Written as `[T]`. Slice, /// An array with the given length. Written as `[T; n]`. Array, /// A raw pointer. Written as `*mut T` or `*const T` RawPtr(Mutability), /// A reference; a pointer with an associated lifetime. Written as /// `&'a mut T` or `&'a T`. Ref(Mutability), /// The anonymous type of a function declaration/definition. Each /// function has a unique type, which is output (for a function /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`. /// /// This includes tuple struct / enum variant constructors as well. /// /// For example the type of `bar` here: /// /// ```rust /// fn foo() -> i32 { 1 } /// let bar = foo; // bar: fn() -> i32 {foo} /// ``` FnDef(CallableDef), /// A pointer to a function. Written as `fn() -> i32`. /// /// For example the type of `bar` here: /// /// ```rust /// fn foo() -> i32 { 1 } /// let bar: fn() -> i32 = foo; /// ``` FnPtr { num_args: u16 }, /// The never type `!`. Never, /// A tuple type. For example, `(i32, bool)`. Tuple { cardinality: u16 }, } /// A nominal type with (maybe 0) type parameters. This might be a primitive /// type like `bool`, a struct, tuple, function pointer, reference or /// several other things. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct ApplicationTy { pub ctor: TypeCtor, pub parameters: Substs, } /// A type. /// /// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents /// the same thing (but in a different way). /// /// This should be cheap to clone. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub enum Ty { /// A nominal type with (maybe 0) type parameters. This might be a primitive /// type like `bool`, a struct, tuple, function pointer, reference or /// several other things. Apply(ApplicationTy), /// A type parameter; for example, `T` in `fn f(x: T) {} Param { /// The index of the parameter (starting with parameters from the /// surrounding impl, then the current function). idx: u32, /// The name of the parameter, for displaying. // FIXME get rid of this name: Name, }, /// A bound type variable. Only used during trait resolution to represent /// Chalk variables. Bound(u32), /// A type variable used during type checking. Not to be confused with a /// type parameter. Infer(InferTy), /// A placeholder for a type which could not be computed; this is propagated /// to avoid useless error messages. Doubles as a placeholder where type /// variables are inserted before type checking, since we want to try to /// infer a better type here anyway -- for the IDE use case, we want to try /// to infer as much as possible even in the presence of type errors. Unknown, } /// A list of substitutions for generic parameters. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct Substs(Arc<[Ty]>); impl Substs { pub fn empty() -> Substs { Substs(Arc::new([])) } pub fn single(ty: Ty) -> Substs { Substs(Arc::new([ty])) } pub fn prefix(&self, n: usize) -> Substs { Substs(self.0.iter().cloned().take(n).collect::>().into()) } pub fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { // Without an Arc::make_mut_slice, we can't avoid the clone here: let mut v: Vec<_> = self.0.iter().cloned().collect(); for t in &mut v { t.walk_mut(f); } self.0 = v.into(); } pub fn as_single(&self) -> &Ty { if self.0.len() != 1 { panic!("expected substs of len 1, got {:?}", self); } &self.0[0] } /// Return Substs that replace each parameter by itself (i.e. `Ty::Param`). pub fn identity(generic_params: &GenericParams) -> Substs { Substs( generic_params .params_including_parent() .into_iter() .map(|p| Ty::Param { idx: p.idx, name: p.name.clone() }) .collect::>() .into(), ) } /// Return Substs that replace each parameter by a bound variable. pub fn bound_vars(generic_params: &GenericParams) -> Substs { Substs( generic_params .params_including_parent() .into_iter() .map(|p| Ty::Bound(p.idx)) .collect::>() .into(), ) } } impl From> for Substs { fn from(v: Vec) -> Self { Substs(v.into()) } } impl Deref for Substs { type Target = [Ty]; fn deref(&self) -> &[Ty] { &self.0 } } /// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait. /// Name to be bikeshedded: TraitBound? TraitImplements? #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct TraitRef { /// FIXME name? trait_: Trait, substs: Substs, } impl TraitRef { pub fn self_ty(&self) -> &Ty { &self.substs[0] } pub fn subst(mut self, substs: &Substs) -> TraitRef { self.substs.walk_mut(&mut |ty_mut| { let ty = mem::replace(ty_mut, Ty::Unknown); *ty_mut = ty.subst(substs); }); self } } /// Like `generics::WherePredicate`, but with resolved types: A condition on the /// parameters of a generic item. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub enum GenericPredicate { /// The given trait needs to be implemented for its type parameters. Implemented(TraitRef), /// We couldn't resolve the trait reference. (If some type parameters can't /// be resolved, they will just be Unknown). Error, } impl GenericPredicate { pub fn is_error(&self) -> bool { match self { GenericPredicate::Error => true, _ => false, } } pub fn subst(self, substs: &Substs) -> GenericPredicate { match self { GenericPredicate::Implemented(trait_ref) => { GenericPredicate::Implemented(trait_ref.subst(substs)) } GenericPredicate::Error => self, } } } /// Basically a claim (currently not validated / checked) that the contained /// type / trait ref contains no inference variables; any inference variables it /// contained have been replaced by bound variables, and `num_vars` tells us how /// many there are. This is used to erase irrelevant differences between types /// before using them in queries. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub struct Canonical { pub value: T, pub num_vars: usize, } /// A function signature as seen by type inference: Several parameter types and /// one return type. #[derive(Clone, PartialEq, Eq, Debug)] pub struct FnSig { params_and_return: Arc<[Ty]>, } impl FnSig { pub fn from_params_and_return(mut params: Vec, ret: Ty) -> FnSig { params.push(ret); FnSig { params_and_return: params.into() } } pub fn from_fn_ptr_substs(substs: &Substs) -> FnSig { FnSig { params_and_return: Arc::clone(&substs.0) } } pub fn params(&self) -> &[Ty] { &self.params_and_return[0..self.params_and_return.len() - 1] } pub fn ret(&self) -> &Ty { &self.params_and_return[self.params_and_return.len() - 1] } /// Applies the given substitutions to all types in this signature and /// returns the result. pub fn subst(&self, substs: &Substs) -> FnSig { let result: Vec<_> = self.params_and_return.iter().map(|ty| ty.clone().subst(substs)).collect(); FnSig { params_and_return: result.into() } } pub fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { // Without an Arc::make_mut_slice, we can't avoid the clone here: let mut v: Vec<_> = self.params_and_return.iter().cloned().collect(); for t in &mut v { t.walk_mut(f); } self.params_and_return = v.into(); } } impl Ty { pub fn simple(ctor: TypeCtor) -> Ty { Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() }) } pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty { Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) }) } pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty { Ty::Apply(ApplicationTy { ctor, parameters }) } pub fn unit() -> Self { Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty()) } pub fn walk(&self, f: &mut impl FnMut(&Ty)) { match self { Ty::Apply(a_ty) => { for t in a_ty.parameters.iter() { t.walk(f); } } Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {} } f(self); } fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { match self { Ty::Apply(a_ty) => { a_ty.parameters.walk_mut(f); } Ty::Param { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {} } f(self); } fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Ty { self.walk_mut(&mut |ty_mut| { let ty = mem::replace(ty_mut, Ty::Unknown); *ty_mut = f(ty); }); self } pub fn as_reference(&self) -> Option<(&Ty, Mutability)> { match self { Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => { Some((parameters.as_single(), *mutability)) } _ => None, } } pub fn as_adt(&self) -> Option<(AdtDef, &Substs)> { match self { Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => { Some((*adt_def, parameters)) } _ => None, } } pub fn as_tuple(&self) -> Option<&Substs> { match self { Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => { Some(parameters) } _ => None, } } pub fn as_callable(&self) -> Option<(CallableDef, &Substs)> { match self { Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(callable_def), parameters }) => { Some((*callable_def, parameters)) } _ => None, } } fn builtin_deref(&self) -> Option { match self { Ty::Apply(a_ty) => match a_ty.ctor { TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())), TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())), _ => None, }, _ => None, } } fn callable_sig(&self, db: &impl HirDatabase) -> Option { match self { Ty::Apply(a_ty) => match a_ty.ctor { TypeCtor::FnPtr { .. } => Some(FnSig::from_fn_ptr_substs(&a_ty.parameters)), TypeCtor::FnDef(def) => { let sig = db.callable_item_signature(def); Some(sig.subst(&a_ty.parameters)) } _ => None, }, _ => None, } } /// If this is a type with type parameters (an ADT or function), replaces /// the `Substs` for these type parameters with the given ones. (So e.g. if /// `self` is `Option<_>` and the substs contain `u32`, we'll have /// `Option` afterwards.) pub fn apply_substs(self, substs: Substs) -> Ty { match self { Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => { assert_eq!(previous_substs.len(), substs.len()); Ty::Apply(ApplicationTy { ctor, parameters: substs }) } _ => self, } } /// Replaces type parameters in this type using the given `Substs`. (So e.g. /// if `self` is `&[T]`, where type parameter T has index 0, and the /// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.) pub fn subst(self, substs: &Substs) -> Ty { self.fold(&mut |ty| match ty { Ty::Param { idx, name } => { substs.get(idx as usize).cloned().unwrap_or(Ty::Param { idx, name }) } ty => ty, }) } /// Substitutes `Ty::Bound` vars (as opposed to type parameters). pub fn subst_bound_vars(self, substs: &Substs) -> Ty { self.fold(&mut |ty| match ty { Ty::Bound(idx) => substs.get(idx as usize).cloned().unwrap_or(Ty::Bound(idx)), ty => ty, }) } /// Returns the type parameters of this type if it has some (i.e. is an ADT /// or function); so if `self` is `Option`, this returns the `u32`. fn substs(&self) -> Option { match self { Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()), _ => None, } } } impl HirDisplay for &Ty { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { HirDisplay::hir_fmt(*self, f) } } impl HirDisplay for ApplicationTy { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { match self.ctor { TypeCtor::Bool => write!(f, "bool")?, TypeCtor::Char => write!(f, "char")?, TypeCtor::Int(t) => write!(f, "{}", t)?, TypeCtor::Float(t) => write!(f, "{}", t)?, TypeCtor::Str => write!(f, "str")?, TypeCtor::Slice => { let t = self.parameters.as_single(); write!(f, "[{}]", t.display(f.db))?; } TypeCtor::Array => { let t = self.parameters.as_single(); write!(f, "[{};_]", t.display(f.db))?; } TypeCtor::RawPtr(m) => { let t = self.parameters.as_single(); write!(f, "*{}{}", m.as_keyword_for_ptr(), t.display(f.db))?; } TypeCtor::Ref(m) => { let t = self.parameters.as_single(); write!(f, "&{}{}", m.as_keyword_for_ref(), t.display(f.db))?; } TypeCtor::Never => write!(f, "!")?, TypeCtor::Tuple { .. } => { let ts = &self.parameters; if ts.len() == 1 { write!(f, "({},)", ts[0].display(f.db))?; } else { write!(f, "(")?; f.write_joined(&*ts.0, ", ")?; write!(f, ")")?; } } TypeCtor::FnPtr { .. } => { let sig = FnSig::from_fn_ptr_substs(&self.parameters); write!(f, "fn(")?; f.write_joined(sig.params(), ", ")?; write!(f, ") -> {}", sig.ret().display(f.db))?; } TypeCtor::FnDef(def) => { let sig = f.db.callable_item_signature(def); let name = match def { CallableDef::Function(ff) => ff.name(f.db), CallableDef::Struct(s) => s.name(f.db).unwrap_or_else(Name::missing), CallableDef::EnumVariant(e) => e.name(f.db).unwrap_or_else(Name::missing), }; match def { CallableDef::Function(_) => write!(f, "fn {}", name)?, CallableDef::Struct(_) | CallableDef::EnumVariant(_) => write!(f, "{}", name)?, } if self.parameters.len() > 0 { write!(f, "<")?; f.write_joined(&*self.parameters.0, ", ")?; write!(f, ">")?; } write!(f, "(")?; f.write_joined(sig.params(), ", ")?; write!(f, ") -> {}", sig.ret().display(f.db))?; } TypeCtor::Adt(def_id) => { let name = match def_id { AdtDef::Struct(s) => s.name(f.db), AdtDef::Enum(e) => e.name(f.db), } .unwrap_or_else(Name::missing); write!(f, "{}", name)?; if self.parameters.len() > 0 { write!(f, "<")?; f.write_joined(&*self.parameters.0, ", ")?; write!(f, ">")?; } } } Ok(()) } } impl HirDisplay for Ty { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { match self { Ty::Apply(a_ty) => a_ty.hir_fmt(f)?, Ty::Param { name, .. } => write!(f, "{}", name)?, Ty::Bound(idx) => write!(f, "?{}", idx)?, Ty::Unknown => write!(f, "{{unknown}}")?, Ty::Infer(..) => write!(f, "_")?, } Ok(()) } } impl HirDisplay for TraitRef { fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result { write!( f, "{}: {}", self.substs[0].display(f.db), self.trait_.name(f.db).unwrap_or_else(Name::missing) )?; if self.substs.len() > 1 { write!(f, "<")?; f.write_joined(&self.substs[1..], ", ")?; write!(f, ">")?; } Ok(()) } }