//! The type system. We currently use this to infer types for completion. //! //! For type inference, compare the implementations in rustc (the various //! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and //! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for //! inference here is the `infer` function, which infers the types of all //! expressions in a given function. //! //! The central struct here is `Ty`, which represents a type. During inference, //! it can contain type 'variables' which represent currently unknown types; as //! we walk through the expressions, we might determine that certain variables //! need to be equal to each other, or to certain types. To record this, we use //! the union-find implementation from the `ena` crate, which is extracted from //! rustc. mod autoderef; pub(crate) mod primitive; #[cfg(test)] mod tests; pub(crate) mod method_resolution; use std::borrow::Cow; use std::ops::Index; use std::sync::Arc; use std::{fmt, mem}; use log; use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError}; use ra_arena::map::ArenaMap; use join_to_string::join; use rustc_hash::FxHashMap; use ra_db::Cancelable; use crate::{ Def, DefId, Module, Function, Struct, Enum, EnumVariant, Path, Name, ImplBlock, FnSignature, FnScopes, db::HirDatabase, type_ref::{TypeRef, Mutability}, name::KnownName, expr::{Body, Expr, Literal, ExprId, PatId, UnaryOp, BinaryOp, Statement}, }; fn transpose(x: Cancelable>) -> Option> { match x { Ok(Some(t)) => Some(Ok(t)), Ok(None) => None, Err(e) => Some(Err(e)), } } /// The ID of a type variable. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] pub struct TypeVarId(u32); impl UnifyKey for TypeVarId { type Value = TypeVarValue; fn index(&self) -> u32 { self.0 } fn from_index(i: u32) -> Self { TypeVarId(i) } fn tag() -> &'static str { "TypeVarId" } } /// The value of a type variable: either we already know the type, or we don't /// know it yet. #[derive(Clone, PartialEq, Eq, Debug)] pub enum TypeVarValue { Known(Ty), Unknown, } impl TypeVarValue { fn known(&self) -> Option<&Ty> { match self { TypeVarValue::Known(ty) => Some(ty), TypeVarValue::Unknown => None, } } } impl UnifyValue for TypeVarValue { type Error = NoError; fn unify_values(value1: &Self, value2: &Self) -> Result { match (value1, value2) { // We should never equate two type variables, both of which have // known types. Instead, we recursively equate those types. (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!( "equating two type variables, both of which have known types: {:?} and {:?}", t1, t2 ), // If one side is known, prefer that one. (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()), (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()), (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown), } } } /// The kinds of placeholders we need during type inference. There's separate /// values for general types, and for integer and float variables. The latter /// two are used for inference of literal values (e.g. `100` could be one of /// several integer types). #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub enum InferTy { TypeVar(TypeVarId), IntVar(TypeVarId), FloatVar(TypeVarId), } impl InferTy { fn to_inner(self) -> TypeVarId { match self { InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty, } } fn fallback_value(self) -> Ty { match self { InferTy::TypeVar(..) => Ty::Unknown, InferTy::IntVar(..) => { Ty::Int(primitive::UncertainIntTy::Signed(primitive::IntTy::I32)) } InferTy::FloatVar(..) => { Ty::Float(primitive::UncertainFloatTy::Known(primitive::FloatTy::F64)) } } } } /// When inferring an expression, we propagate downward whatever type hint we /// are able in the form of an `Expectation`. #[derive(Clone, PartialEq, Eq, Debug)] struct Expectation { ty: Ty, // TODO: In some cases, we need to be aware whether the expectation is that // the type match exactly what we passed, or whether it just needs to be // coercible to the expected type. See Expectation::rvalue_hint in rustc. } impl Expectation { /// The expectation that the type of the expression needs to equal the given /// type. fn has_type(ty: Ty) -> Self { Expectation { ty } } /// This expresses no expectation on the type. fn none() -> Self { Expectation { ty: Ty::Unknown } } } /// A type. This is based on the `TyKind` enum in rustc (librustc/ty/sty.rs). /// /// This should be cheap to clone. #[derive(Clone, PartialEq, Eq, Hash, Debug)] pub enum Ty { /// The primitive boolean type. Written as `bool`. Bool, /// The primitive character type; holds a Unicode scalar value /// (a non-surrogate code point). Written as `char`. Char, /// A primitive integer type. For example, `i32`. Int(primitive::UncertainIntTy), /// A primitive floating-point type. For example, `f64`. Float(primitive::UncertainFloatTy), /// Structures, enumerations and unions. Adt { /// The DefId of the struct/enum. def_id: DefId, /// The name, for displaying. name: Name, // later we'll need generic substitutions here }, /// The pointee of a string slice. Written as `str`. Str, // An array with the given length. Written as `[T; n]`. // Array(Ty, ty::Const), /// The pointee of an array slice. Written as `[T]`. Slice(Arc), /// A raw pointer. Written as `*mut T` or `*const T` RawPtr(Arc, Mutability), /// A reference; a pointer with an associated lifetime. Written as /// `&'a mut T` or `&'a T`. Ref(Arc, Mutability), /// A pointer to a function. Written as `fn() -> i32`. /// /// For example the type of `bar` here: /// /// ```rust /// fn foo() -> i32 { 1 } /// let bar: fn() -> i32 = foo; /// ``` FnPtr(Arc), // rustc has a separate type for each function, which just coerces to the // above function pointer type. Once we implement generics, we will probably // need this as well. // A trait, defined with `dyn Trait`. // Dynamic(), // The anonymous type of a closure. Used to represent the type of // `|a| a`. // Closure(DefId, ClosureSubsts<'tcx>), // The anonymous type of a generator. Used to represent the type of // `|a| yield a`. // Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability), // A type representing the types stored inside a generator. // This should only appear in GeneratorInteriors. // GeneratorWitness(Binder<&'tcx List>>), /// The never type `!`. Never, /// A tuple type. For example, `(i32, bool)`. Tuple(Arc<[Ty]>), // The projection of an associated type. For example, // `>::N`.pub // Projection(ProjectionTy), // Opaque (`impl Trait`) type found in a return type. // Opaque(DefId, Substs), // A type parameter; for example, `T` in `fn f(x: T) {} // Param(ParamTy), /// A type variable used during type checking. Not to be confused with a /// type parameter. Infer(InferTy), /// A placeholder for a type which could not be computed; this is propagated /// to avoid useless error messages. Doubles as a placeholder where type /// variables are inserted before type checking, since we want to try to /// infer a better type here anyway -- for the IDE use case, we want to try /// to infer as much as possible even in the presence of type errors. Unknown, } /// A function signature. #[derive(Clone, PartialEq, Eq, Hash, Debug)] pub struct FnSig { input: Vec, output: Ty, } impl Ty { pub(crate) fn from_hir( db: &impl HirDatabase, module: &Module, impl_block: Option<&ImplBlock>, type_ref: &TypeRef, ) -> Cancelable { Ok(match type_ref { TypeRef::Never => Ty::Never, TypeRef::Tuple(inner) => { let inner_tys = inner .iter() .map(|tr| Ty::from_hir(db, module, impl_block, tr)) .collect::>>()?; Ty::Tuple(inner_tys.into()) } TypeRef::Path(path) => Ty::from_hir_path(db, module, impl_block, path)?, TypeRef::RawPtr(inner, mutability) => { let inner_ty = Ty::from_hir(db, module, impl_block, inner)?; Ty::RawPtr(Arc::new(inner_ty), *mutability) } TypeRef::Array(_inner) => Ty::Unknown, // TODO TypeRef::Slice(inner) => { let inner_ty = Ty::from_hir(db, module, impl_block, inner)?; Ty::Slice(Arc::new(inner_ty)) } TypeRef::Reference(inner, mutability) => { let inner_ty = Ty::from_hir(db, module, impl_block, inner)?; Ty::Ref(Arc::new(inner_ty), *mutability) } TypeRef::Placeholder => Ty::Unknown, TypeRef::Fn(params) => { let mut inner_tys = params .iter() .map(|tr| Ty::from_hir(db, module, impl_block, tr)) .collect::>>()?; let return_ty = inner_tys .pop() .expect("TypeRef::Fn should always have at least return type"); let sig = FnSig { input: inner_tys, output: return_ty, }; Ty::FnPtr(Arc::new(sig)) } TypeRef::Error => Ty::Unknown, }) } pub(crate) fn from_hir_opt( db: &impl HirDatabase, module: &Module, impl_block: Option<&ImplBlock>, type_ref: Option<&TypeRef>, ) -> Cancelable { type_ref .map(|t| Ty::from_hir(db, module, impl_block, t)) .unwrap_or(Ok(Ty::Unknown)) } pub(crate) fn from_hir_path( db: &impl HirDatabase, module: &Module, impl_block: Option<&ImplBlock>, path: &Path, ) -> Cancelable { if let Some(name) = path.as_ident() { if let Some(int_ty) = primitive::UncertainIntTy::from_name(name) { return Ok(Ty::Int(int_ty)); } else if let Some(float_ty) = primitive::UncertainFloatTy::from_name(name) { return Ok(Ty::Float(float_ty)); } else if name.as_known_name() == Some(KnownName::SelfType) { return Ty::from_hir_opt(db, module, None, impl_block.map(|i| i.target_type())); } else if let Some(known) = name.as_known_name() { match known { KnownName::Bool => return Ok(Ty::Bool), KnownName::Char => return Ok(Ty::Char), KnownName::Str => return Ok(Ty::Str), _ => {} } } } // Resolve in module (in type namespace) let resolved = if let Some(r) = module.resolve_path(db, path).take_types() { r } else { return Ok(Ty::Unknown); }; let ty = db.type_for_def(resolved)?; Ok(ty) } pub fn unit() -> Self { Ty::Tuple(Arc::new([])) } fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) { f(self); match self { Ty::Slice(t) => Arc::make_mut(t).walk_mut(f), Ty::RawPtr(t, _) => Arc::make_mut(t).walk_mut(f), Ty::Ref(t, _) => Arc::make_mut(t).walk_mut(f), Ty::Tuple(ts) => { // Without an Arc::make_mut_slice, we can't avoid the clone here: let mut v: Vec<_> = ts.iter().cloned().collect(); for t in &mut v { t.walk_mut(f); } *ts = v.into(); } Ty::FnPtr(sig) => { let sig_mut = Arc::make_mut(sig); for input in &mut sig_mut.input { input.walk_mut(f); } sig_mut.output.walk_mut(f); } Ty::Adt { .. } => {} // need to walk type parameters later _ => {} } } fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Ty { self.walk_mut(&mut |ty_mut| { let ty = mem::replace(ty_mut, Ty::Unknown); *ty_mut = f(ty); }); self } fn builtin_deref(&self) -> Option { match self { Ty::Ref(t, _) => Some(Ty::clone(t)), Ty::RawPtr(t, _) => Some(Ty::clone(t)), _ => None, } } } impl fmt::Display for Ty { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { Ty::Bool => write!(f, "bool"), Ty::Char => write!(f, "char"), Ty::Int(t) => write!(f, "{}", t.ty_to_string()), Ty::Float(t) => write!(f, "{}", t.ty_to_string()), Ty::Str => write!(f, "str"), Ty::Slice(t) => write!(f, "[{}]", t), Ty::RawPtr(t, m) => write!(f, "*{}{}", m.as_keyword_for_ptr(), t), Ty::Ref(t, m) => write!(f, "&{}{}", m.as_keyword_for_ref(), t), Ty::Never => write!(f, "!"), Ty::Tuple(ts) => { if ts.len() == 1 { write!(f, "({},)", ts[0]) } else { join(ts.iter()) .surround_with("(", ")") .separator(", ") .to_fmt(f) } } Ty::FnPtr(sig) => { join(sig.input.iter()) .surround_with("fn(", ")") .separator(", ") .to_fmt(f)?; write!(f, " -> {}", sig.output) } Ty::Adt { name, .. } => write!(f, "{}", name), Ty::Unknown => write!(f, "[unknown]"), Ty::Infer(..) => write!(f, "_"), } } } // Functions returning declared types for items /// Compute the declared type of a function. This should not need to look at the /// function body. fn type_for_fn(db: &impl HirDatabase, f: Function) -> Cancelable { let signature = f.signature(db); let module = f.module(db); let impl_block = f.impl_block(db); // TODO we ignore type parameters for now let input = signature .params() .iter() .map(|tr| Ty::from_hir(db, &module, impl_block.as_ref(), tr)) .collect::>>()?; let output = Ty::from_hir(db, &module, impl_block.as_ref(), signature.ret_type())?; let sig = FnSig { input, output }; Ok(Ty::FnPtr(Arc::new(sig))) } fn type_for_struct(db: &impl HirDatabase, s: Struct) -> Cancelable { Ok(Ty::Adt { def_id: s.def_id(), name: s.name(db).unwrap_or_else(Name::missing), }) } pub(crate) fn type_for_enum(db: &impl HirDatabase, s: Enum) -> Cancelable { Ok(Ty::Adt { def_id: s.def_id(), name: s.name(db).unwrap_or_else(Name::missing), }) } pub(crate) fn type_for_enum_variant(db: &impl HirDatabase, ev: EnumVariant) -> Cancelable { let enum_parent = ev.parent_enum(db); type_for_enum(db, enum_parent) } pub(super) fn type_for_def(db: &impl HirDatabase, def_id: DefId) -> Cancelable { let def = def_id.resolve(db); match def { Def::Module(..) => { log::debug!("trying to get type for module {:?}", def_id); Ok(Ty::Unknown) } Def::Function(f) => type_for_fn(db, f), Def::Struct(s) => type_for_struct(db, s), Def::Enum(e) => type_for_enum(db, e), Def::EnumVariant(ev) => type_for_enum_variant(db, ev), _ => { log::debug!( "trying to get type for item of unknown type {:?} {:?}", def_id, def ); Ok(Ty::Unknown) } } } pub(super) fn type_for_field( db: &impl HirDatabase, def_id: DefId, field: Name, ) -> Cancelable> { let def = def_id.resolve(db); let variant_data = match def { Def::Struct(s) => s.variant_data(db)?, Def::EnumVariant(ev) => ev.variant_data(db), // TODO: unions _ => panic!( "trying to get type for field in non-struct/variant {:?}", def_id ), }; let module = def_id.module(db); let impl_block = def_id.impl_block(db); let type_ref = ctry!(variant_data.get_field_type_ref(&field)); Ok(Some(Ty::from_hir( db, &module, impl_block.as_ref(), &type_ref, )?)) } /// The result of type inference: A mapping from expressions and patterns to types. #[derive(Clone, PartialEq, Eq, Debug)] pub struct InferenceResult { /// For each method call expr, record the function it resolved to. method_resolutions: FxHashMap, type_of_expr: ArenaMap, type_of_pat: ArenaMap, } impl InferenceResult { pub fn method_resolution(&self, expr: ExprId) -> Option { self.method_resolutions.get(&expr).map(|it| *it) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, expr: ExprId) -> &Ty { self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, pat: PatId) -> &Ty { self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown) } } /// The inference context contains all information needed during type inference. #[derive(Clone, Debug)] struct InferenceContext<'a, D: HirDatabase> { db: &'a D, body: Arc, scopes: Arc, module: Module, impl_block: Option, var_unification_table: InPlaceUnificationTable, method_resolutions: FxHashMap, type_of_expr: ArenaMap, type_of_pat: ArenaMap, /// The return type of the function being inferred. return_ty: Ty, } fn binary_op_return_ty(op: BinaryOp, rhs_ty: Ty) -> Ty { match op { BinaryOp::BooleanOr | BinaryOp::BooleanAnd | BinaryOp::EqualityTest | BinaryOp::LesserEqualTest | BinaryOp::GreaterEqualTest | BinaryOp::LesserTest | BinaryOp::GreaterTest => Ty::Bool, BinaryOp::Assignment | BinaryOp::AddAssign | BinaryOp::SubAssign | BinaryOp::DivAssign | BinaryOp::MulAssign | BinaryOp::RemAssign | BinaryOp::ShrAssign | BinaryOp::ShlAssign | BinaryOp::BitAndAssign | BinaryOp::BitOrAssign | BinaryOp::BitXorAssign => Ty::unit(), BinaryOp::Addition | BinaryOp::Subtraction | BinaryOp::Multiplication | BinaryOp::Division | BinaryOp::Remainder | BinaryOp::LeftShift | BinaryOp::RightShift | BinaryOp::BitwiseAnd | BinaryOp::BitwiseOr | BinaryOp::BitwiseXor => match rhs_ty { Ty::Int(..) | Ty::Float(..) => rhs_ty, _ => Ty::Unknown, }, BinaryOp::RangeRightOpen | BinaryOp::RangeRightClosed => Ty::Unknown, } } fn binary_op_rhs_expectation(op: BinaryOp, lhs_ty: Ty) -> Ty { match op { BinaryOp::BooleanAnd | BinaryOp::BooleanOr => Ty::Bool, BinaryOp::Assignment | BinaryOp::EqualityTest => match lhs_ty { Ty::Int(..) | Ty::Float(..) | Ty::Str | Ty::Char | Ty::Bool => lhs_ty, _ => Ty::Unknown, }, BinaryOp::LesserEqualTest | BinaryOp::GreaterEqualTest | BinaryOp::LesserTest | BinaryOp::GreaterTest | BinaryOp::AddAssign | BinaryOp::SubAssign | BinaryOp::DivAssign | BinaryOp::MulAssign | BinaryOp::RemAssign | BinaryOp::ShrAssign | BinaryOp::ShlAssign | BinaryOp::BitAndAssign | BinaryOp::BitOrAssign | BinaryOp::BitXorAssign | BinaryOp::Addition | BinaryOp::Subtraction | BinaryOp::Multiplication | BinaryOp::Division | BinaryOp::Remainder | BinaryOp::LeftShift | BinaryOp::RightShift | BinaryOp::BitwiseAnd | BinaryOp::BitwiseOr | BinaryOp::BitwiseXor => match lhs_ty { Ty::Int(..) | Ty::Float(..) => lhs_ty, _ => Ty::Unknown, }, _ => Ty::Unknown, } } impl<'a, D: HirDatabase> InferenceContext<'a, D> { fn new( db: &'a D, body: Arc, scopes: Arc, module: Module, impl_block: Option, ) -> Self { InferenceContext { method_resolutions: FxHashMap::default(), type_of_expr: ArenaMap::default(), type_of_pat: ArenaMap::default(), var_unification_table: InPlaceUnificationTable::new(), return_ty: Ty::Unknown, // set in collect_fn_signature db, body, scopes, module, impl_block, } } fn resolve_all(mut self) -> InferenceResult { let mut expr_types = mem::replace(&mut self.type_of_expr, ArenaMap::default()); for ty in expr_types.values_mut() { let resolved = self.resolve_ty_completely(mem::replace(ty, Ty::Unknown)); *ty = resolved; } let mut pat_types = mem::replace(&mut self.type_of_pat, ArenaMap::default()); for ty in pat_types.values_mut() { let resolved = self.resolve_ty_completely(mem::replace(ty, Ty::Unknown)); *ty = resolved; } InferenceResult { method_resolutions: mem::replace(&mut self.method_resolutions, Default::default()), type_of_expr: expr_types, type_of_pat: pat_types, } } fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) { self.type_of_expr.insert(expr, ty); } fn write_method_resolution(&mut self, expr: ExprId, def_id: DefId) { self.method_resolutions.insert(expr, def_id); } fn write_pat_ty(&mut self, pat: PatId, ty: Ty) { self.type_of_pat.insert(pat, ty); } fn make_ty(&self, type_ref: &TypeRef) -> Cancelable { Ty::from_hir(self.db, &self.module, self.impl_block.as_ref(), type_ref) } fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { // try to resolve type vars first let ty1 = self.resolve_ty_shallow(ty1); let ty2 = self.resolve_ty_shallow(ty2); match (&*ty1, &*ty2) { (Ty::Unknown, ..) => true, (.., Ty::Unknown) => true, (Ty::Int(t1), Ty::Int(t2)) => match (t1, t2) { (primitive::UncertainIntTy::Unknown, _) | (_, primitive::UncertainIntTy::Unknown) => true, _ => t1 == t2, }, (Ty::Float(t1), Ty::Float(t2)) => match (t1, t2) { (primitive::UncertainFloatTy::Unknown, _) | (_, primitive::UncertainFloatTy::Unknown) => true, _ => t1 == t2, }, (Ty::Bool, _) | (Ty::Str, _) | (Ty::Never, _) | (Ty::Char, _) => ty1 == ty2, ( Ty::Adt { def_id: def_id1, .. }, Ty::Adt { def_id: def_id2, .. }, ) if def_id1 == def_id2 => true, (Ty::Slice(t1), Ty::Slice(t2)) => self.unify(t1, t2), (Ty::RawPtr(t1, m1), Ty::RawPtr(t2, m2)) if m1 == m2 => self.unify(t1, t2), (Ty::Ref(t1, m1), Ty::Ref(t2, m2)) if m1 == m2 => self.unify(t1, t2), (Ty::FnPtr(sig1), Ty::FnPtr(sig2)) if sig1 == sig2 => true, (Ty::Tuple(ts1), Ty::Tuple(ts2)) if ts1.len() == ts2.len() => ts1 .iter() .zip(ts2.iter()) .all(|(t1, t2)| self.unify(t1, t2)), (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2))) | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2))) | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => { // both type vars are unknown since we tried to resolve them self.var_unification_table.union(*tv1, *tv2); true } (Ty::Infer(InferTy::TypeVar(tv)), other) | (other, Ty::Infer(InferTy::TypeVar(tv))) | (Ty::Infer(InferTy::IntVar(tv)), other) | (other, Ty::Infer(InferTy::IntVar(tv))) | (Ty::Infer(InferTy::FloatVar(tv)), other) | (other, Ty::Infer(InferTy::FloatVar(tv))) => { // the type var is unknown since we tried to resolve it self.var_unification_table .union_value(*tv, TypeVarValue::Known(other.clone())); true } _ => false, } } fn new_type_var(&mut self) -> Ty { Ty::Infer(InferTy::TypeVar( self.var_unification_table.new_key(TypeVarValue::Unknown), )) } fn new_integer_var(&mut self) -> Ty { Ty::Infer(InferTy::IntVar( self.var_unification_table.new_key(TypeVarValue::Unknown), )) } fn new_float_var(&mut self) -> Ty { Ty::Infer(InferTy::FloatVar( self.var_unification_table.new_key(TypeVarValue::Unknown), )) } /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it. fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty { match ty { Ty::Unknown => self.new_type_var(), Ty::Int(primitive::UncertainIntTy::Unknown) => self.new_integer_var(), Ty::Float(primitive::UncertainFloatTy::Unknown) => self.new_float_var(), _ => ty, } } fn insert_type_vars(&mut self, ty: Ty) -> Ty { ty.fold(&mut |ty| self.insert_type_vars_shallow(ty)) } /// Resolves the type as far as currently possible, replacing type variables /// by their known types. All types returned by the infer_* functions should /// be resolved as far as possible, i.e. contain no type variables with /// known type. fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() { // known_ty may contain other variables that are known by now self.resolve_ty_as_possible(known_ty.clone()) } else { ty } } _ => ty, }) } /// If `ty` is a type variable with known type, returns that type; /// otherwise, return ty. fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> { match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); match self.var_unification_table.probe_value(inner).known() { Some(known_ty) => { // The known_ty can't be a type var itself Cow::Owned(known_ty.clone()) } _ => Cow::Borrowed(ty), } } _ => Cow::Borrowed(ty), } } /// Resolves the type completely; type variables without known type are /// replaced by Ty::Unknown. fn resolve_ty_completely(&mut self, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() { // known_ty may contain other variables that are known by now self.resolve_ty_completely(known_ty.clone()) } else { tv.fallback_value() } } _ => ty, }) } fn infer_path_expr(&mut self, expr: ExprId, path: &Path) -> Cancelable> { if path.is_ident() || path.is_self() { // resolve locally let name = path.as_ident().cloned().unwrap_or_else(Name::self_param); if let Some(scope_entry) = self.scopes.resolve_local_name(expr, name) { let ty = ctry!(self.type_of_pat.get(scope_entry.pat())); let ty = self.resolve_ty_as_possible(ty.clone()); return Ok(Some(ty)); }; }; // resolve in module let resolved = ctry!(self.module.resolve_path(self.db, &path).take_values()); let ty = self.db.type_for_def(resolved)?; let ty = self.insert_type_vars(ty); Ok(Some(ty)) } fn resolve_variant(&self, path: Option<&Path>) -> Cancelable<(Ty, Option)> { let path = if let Some(path) = path { path } else { return Ok((Ty::Unknown, None)); }; let def_id = if let Some(def_id) = self.module.resolve_path(self.db, &path).take_types() { def_id } else { return Ok((Ty::Unknown, None)); }; Ok(match def_id.resolve(self.db) { Def::Struct(s) => { let ty = type_for_struct(self.db, s)?; (ty, Some(def_id)) } Def::EnumVariant(ev) => { let ty = type_for_enum_variant(self.db, ev)?; (ty, Some(def_id)) } _ => (Ty::Unknown, None), }) } fn infer_expr(&mut self, expr: ExprId, expected: &Expectation) -> Cancelable { let body = Arc::clone(&self.body); // avoid borrow checker problem let ty = match &body[expr] { Expr::Missing => Ty::Unknown, Expr::If { condition, then_branch, else_branch, } => { // if let is desugared to match, so this is always simple if self.infer_expr(*condition, &Expectation::has_type(Ty::Bool))?; let then_ty = self.infer_expr(*then_branch, expected)?; match else_branch { Some(else_branch) => { self.infer_expr(*else_branch, expected)?; } None => { // no else branch -> unit self.unify(&then_ty, &Ty::unit()); // actually coerce } }; then_ty } Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected)?, Expr::Loop { body } => { self.infer_expr(*body, &Expectation::has_type(Ty::unit()))?; // TODO handle break with value Ty::Never } Expr::While { condition, body } => { // while let is desugared to a match loop, so this is always simple while self.infer_expr(*condition, &Expectation::has_type(Ty::Bool))?; self.infer_expr(*body, &Expectation::has_type(Ty::unit()))?; Ty::unit() } Expr::For { iterable, body, .. } => { let _iterable_ty = self.infer_expr(*iterable, &Expectation::none()); // TODO write type for pat self.infer_expr(*body, &Expectation::has_type(Ty::unit()))?; Ty::unit() } Expr::Lambda { body, .. } => { // TODO write types for args, infer lambda type etc. let _body_ty = self.infer_expr(*body, &Expectation::none())?; Ty::Unknown } Expr::Call { callee, args } => { let callee_ty = self.infer_expr(*callee, &Expectation::none())?; let (param_tys, ret_ty) = match &callee_ty { Ty::FnPtr(sig) => (&sig.input[..], sig.output.clone()), _ => { // not callable // TODO report an error? (&[][..], Ty::Unknown) } }; for (i, arg) in args.iter().enumerate() { self.infer_expr( *arg, &Expectation::has_type(param_tys.get(i).cloned().unwrap_or(Ty::Unknown)), )?; } ret_ty } Expr::MethodCall { receiver, args, method_name, } => { let receiver_ty = self.infer_expr(*receiver, &Expectation::none())?; let resolved = receiver_ty.clone().lookup_method(self.db, method_name)?; let method_ty = match resolved { Some(def_id) => { self.write_method_resolution(expr, def_id); self.db.type_for_def(def_id)? } None => Ty::Unknown, }; let method_ty = self.insert_type_vars(method_ty); let (expected_receiver_ty, param_tys, ret_ty) = match &method_ty { Ty::FnPtr(sig) => { if sig.input.len() > 0 { (&sig.input[0], &sig.input[1..], sig.output.clone()) } else { (&Ty::Unknown, &[][..], sig.output.clone()) } } _ => (&Ty::Unknown, &[][..], Ty::Unknown), }; // TODO we would have to apply the autoderef/autoref steps here // to get the correct receiver type to unify... self.unify(expected_receiver_ty, &receiver_ty); for (i, arg) in args.iter().enumerate() { self.infer_expr( *arg, &Expectation::has_type(param_tys.get(i).cloned().unwrap_or(Ty::Unknown)), )?; } ret_ty } Expr::Match { expr, arms } => { let _ty = self.infer_expr(*expr, &Expectation::none())?; for arm in arms { // TODO type the bindings in pats // TODO type the guard let _ty = self.infer_expr(arm.expr, &Expectation::none())?; } // TODO unify all the match arm types Ty::Unknown } Expr::Path(p) => self.infer_path_expr(expr, p)?.unwrap_or(Ty::Unknown), Expr::Continue => Ty::Never, Expr::Break { expr } => { if let Some(expr) = expr { // TODO handle break with value self.infer_expr(*expr, &Expectation::none())?; } Ty::Never } Expr::Return { expr } => { if let Some(expr) = expr { self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()))?; } Ty::Never } Expr::StructLit { path, fields, spread, } => { let (ty, def_id) = self.resolve_variant(path.as_ref())?; for field in fields { let field_ty = if let Some(def_id) = def_id { self.db .type_for_field(def_id, field.name.clone())? .unwrap_or(Ty::Unknown) } else { Ty::Unknown }; self.infer_expr(field.expr, &Expectation::has_type(field_ty))?; } if let Some(expr) = spread { self.infer_expr(*expr, &Expectation::has_type(ty.clone()))?; } ty } Expr::Field { expr, name } => { let receiver_ty = self.infer_expr(*expr, &Expectation::none())?; let ty = receiver_ty .autoderef(self.db) .find_map(|derefed_ty| match derefed_ty { // this is more complicated than necessary because type_for_field is cancelable Ty::Tuple(fields) => { let i = name.to_string().parse::().ok(); i.and_then(|i| fields.get(i).cloned()).map(Ok) } Ty::Adt { def_id, .. } => { transpose(self.db.type_for_field(def_id, name.clone())) } _ => None, }) .unwrap_or(Ok(Ty::Unknown))?; self.insert_type_vars(ty) } Expr::Try { expr } => { let _inner_ty = self.infer_expr(*expr, &Expectation::none())?; Ty::Unknown } Expr::Cast { expr, type_ref } => { let _inner_ty = self.infer_expr(*expr, &Expectation::none())?; let cast_ty = Ty::from_hir(self.db, &self.module, self.impl_block.as_ref(), type_ref)?; let cast_ty = self.insert_type_vars(cast_ty); // TODO check the cast... cast_ty } Expr::Ref { expr, mutability } => { // TODO pass the expectation down let inner_ty = self.infer_expr(*expr, &Expectation::none())?; // TODO reference coercions etc. Ty::Ref(Arc::new(inner_ty), *mutability) } Expr::UnaryOp { expr, op } => { let inner_ty = self.infer_expr(*expr, &Expectation::none())?; match op { Some(UnaryOp::Deref) => { if let Some(derefed_ty) = inner_ty.builtin_deref() { derefed_ty } else { // TODO Deref::deref Ty::Unknown } } _ => Ty::Unknown, } } Expr::BinaryOp { lhs, rhs, op } => match op { Some(op) => { let lhs_expectation = match op { BinaryOp::BooleanAnd | BinaryOp::BooleanOr => { Expectation::has_type(Ty::Bool) } _ => Expectation::none(), }; let lhs_ty = self.infer_expr(*lhs, &lhs_expectation)?; // TODO: find implementation of trait corresponding to operation // symbol and resolve associated `Output` type let rhs_expectation = binary_op_rhs_expectation(*op, lhs_ty); let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation))?; // TODO: similar as above, return ty is often associated trait type binary_op_return_ty(*op, rhs_ty) } _ => Ty::Unknown, }, Expr::Tuple { exprs } => { let mut ty_vec = Vec::with_capacity(exprs.len()); for arg in exprs.iter() { ty_vec.push(self.infer_expr(*arg, &Expectation::none())?); } Ty::Tuple(Arc::from(ty_vec)) } Expr::Literal(lit) => match lit { Literal::Bool(..) => Ty::Bool, Literal::String(..) => Ty::Ref(Arc::new(Ty::Str), Mutability::Shared), Literal::ByteString(..) => { let byte_type = Arc::new(Ty::Int(primitive::UncertainIntTy::Unsigned( primitive::UintTy::U8, ))); let slice_type = Arc::new(Ty::Slice(byte_type)); Ty::Ref(slice_type, Mutability::Shared) } Literal::Char(..) => Ty::Char, Literal::Int(_v, ty) => Ty::Int(*ty), Literal::Float(_v, ty) => Ty::Float(*ty), }, }; // use a new type variable if we got Ty::Unknown here let ty = self.insert_type_vars_shallow(ty); self.unify(&ty, &expected.ty); let ty = self.resolve_ty_as_possible(ty); self.write_expr_ty(expr, ty.clone()); Ok(ty) } fn infer_block( &mut self, statements: &[Statement], tail: Option, expected: &Expectation, ) -> Cancelable { for stmt in statements { match stmt { Statement::Let { pat, type_ref, initializer, } => { let decl_ty = Ty::from_hir_opt( self.db, &self.module, self.impl_block.as_ref(), type_ref.as_ref(), )?; let decl_ty = self.insert_type_vars(decl_ty); let ty = if let Some(expr) = initializer { let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty))?; expr_ty } else { decl_ty }; self.write_pat_ty(*pat, ty); } Statement::Expr(expr) => { self.infer_expr(*expr, &Expectation::none())?; } } } let ty = if let Some(expr) = tail { self.infer_expr(expr, expected)? } else { Ty::unit() }; Ok(ty) } fn collect_fn_signature(&mut self, signature: &FnSignature) -> Cancelable<()> { let body = Arc::clone(&self.body); // avoid borrow checker problem for (type_ref, pat) in signature.params().iter().zip(body.params()) { let ty = self.make_ty(type_ref)?; let ty = self.insert_type_vars(ty); self.write_pat_ty(*pat, ty); } self.return_ty = { let ty = self.make_ty(signature.ret_type())?; let ty = self.insert_type_vars(ty); ty }; Ok(()) } fn infer_body(&mut self) -> Cancelable<()> { self.infer_expr( self.body.body_expr(), &Expectation::has_type(self.return_ty.clone()), )?; Ok(()) } } pub fn infer(db: &impl HirDatabase, def_id: DefId) -> Cancelable> { db.check_canceled(); let function = Function::new(def_id); // TODO: consts also need inference let body = function.body(db); let scopes = db.fn_scopes(def_id); let module = function.module(db); let impl_block = function.impl_block(db); let mut ctx = InferenceContext::new(db, body, scopes, module, impl_block); let signature = function.signature(db); ctx.collect_fn_signature(&signature)?; ctx.infer_body()?; Ok(Arc::new(ctx.resolve_all())) }