//! Type inference, i.e. the process of walking through the code and determining //! the type of each expression and pattern. //! //! For type inference, compare the implementations in rustc (the various //! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and //! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for //! inference here is the `infer` function, which infers the types of all //! expressions in a given function. //! //! During inference, types (i.e. the `Ty` struct) can contain type 'variables' //! which represent currently unknown types; as we walk through the expressions, //! we might determine that certain variables need to be equal to each other, or //! to certain types. To record this, we use the union-find implementation from //! the `ena` crate, which is extracted from rustc. use std::borrow::Cow; use std::mem; use std::ops::Index; use std::sync::Arc; use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue}; use rustc_hash::FxHashMap; use ra_arena::map::ArenaMap; use ra_prof::profile; use test_utils::tested_by; use super::{ lower, primitive, traits::{Guidance, Obligation, ProjectionPredicate, Solution}, ApplicationTy, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypableDef, TypeCtor, TypeWalk, }; use crate::{ adt::VariantDef, code_model::TypeAlias, db::HirDatabase, diagnostics::DiagnosticSink, expr::{BindingAnnotation, Body, ExprId, PatId}, name, path::known, resolve::{Resolver, TypeNs}, ty::infer::diagnostics::InferenceDiagnostic, type_ref::{Mutability, TypeRef}, Adt, AssocItem, ConstData, DefWithBody, FnData, Function, HasBody, Path, StructField, }; macro_rules! ty_app { ($ctor:pat, $param:pat) => { crate::ty::Ty::Apply(crate::ty::ApplicationTy { ctor: $ctor, parameters: $param }) }; ($ctor:pat) => { ty_app!($ctor, _) }; } mod unify; mod path; mod expr; mod pat; mod coerce; /// The entry point of type inference. pub fn infer_query(db: &impl HirDatabase, def: DefWithBody) -> Arc { let _p = profile("infer_query"); let body = def.body(db); let resolver = def.resolver(db); let mut ctx = InferenceContext::new(db, body, resolver); match def { DefWithBody::Const(ref c) => ctx.collect_const(&c.data(db)), DefWithBody::Function(ref f) => ctx.collect_fn(&f.data(db)), DefWithBody::Static(ref s) => ctx.collect_const(&s.data(db)), } ctx.infer_body(); Arc::new(ctx.resolve_all()) } #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)] enum ExprOrPatId { ExprId(ExprId), PatId(PatId), } impl_froms!(ExprOrPatId: ExprId, PatId); /// Binding modes inferred for patterns. /// https://doc.rust-lang.org/reference/patterns.html#binding-modes #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum BindingMode { Move, Ref(Mutability), } impl BindingMode { pub fn convert(annotation: BindingAnnotation) -> BindingMode { match annotation { BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move, BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared), BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut), } } } impl Default for BindingMode { fn default() -> Self { BindingMode::Move } } /// A mismatch between an expected and an inferred type. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct TypeMismatch { pub expected: Ty, pub actual: Ty, } /// The result of type inference: A mapping from expressions and patterns to types. #[derive(Clone, PartialEq, Eq, Debug, Default)] pub struct InferenceResult { /// For each method call expr, records the function it resolves to. method_resolutions: FxHashMap, /// For each field access expr, records the field it resolves to. field_resolutions: FxHashMap, /// For each struct literal, records the variant it resolves to. variant_resolutions: FxHashMap, /// For each associated item record what it resolves to assoc_resolutions: FxHashMap, diagnostics: Vec, pub(super) type_of_expr: ArenaMap, pub(super) type_of_pat: ArenaMap, pub(super) type_mismatches: ArenaMap, } impl InferenceResult { pub fn method_resolution(&self, expr: ExprId) -> Option { self.method_resolutions.get(&expr).copied() } pub fn field_resolution(&self, expr: ExprId) -> Option { self.field_resolutions.get(&expr).copied() } pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option { self.variant_resolutions.get(&id.into()).copied() } pub fn variant_resolution_for_pat(&self, id: PatId) -> Option { self.variant_resolutions.get(&id.into()).copied() } pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option { self.assoc_resolutions.get(&id.into()).copied() } pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option { self.assoc_resolutions.get(&id.into()).copied() } pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> { self.type_mismatches.get(expr) } pub(crate) fn add_diagnostics( &self, db: &impl HirDatabase, owner: Function, sink: &mut DiagnosticSink, ) { self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink)) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, expr: ExprId) -> &Ty { self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, pat: PatId) -> &Ty { self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown) } } /// The inference context contains all information needed during type inference. #[derive(Clone, Debug)] struct InferenceContext<'a, D: HirDatabase> { db: &'a D, body: Arc, resolver: Resolver, var_unification_table: InPlaceUnificationTable, trait_env: Arc, obligations: Vec, result: InferenceResult, /// The return type of the function being inferred. return_ty: Ty, /// Impls of `CoerceUnsized` used in coercion. /// (from_ty_ctor, to_ty_ctor) => coerce_generic_index // FIXME: Use trait solver for this. // Chalk seems unable to work well with builtin impl of `Unsize` now. coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>, } impl<'a, D: HirDatabase> InferenceContext<'a, D> { fn new(db: &'a D, body: Arc, resolver: Resolver) -> Self { InferenceContext { result: InferenceResult::default(), var_unification_table: InPlaceUnificationTable::new(), obligations: Vec::default(), return_ty: Ty::Unknown, // set in collect_fn_signature trait_env: lower::trait_env(db, &resolver), coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver), db, body, resolver, } } fn resolve_all(mut self) -> InferenceResult { // FIXME resolve obligations as well (use Guidance if necessary) let mut result = mem::replace(&mut self.result, InferenceResult::default()); let mut tv_stack = Vec::new(); for ty in result.type_of_expr.values_mut() { let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown)); *ty = resolved; } for ty in result.type_of_pat.values_mut() { let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown)); *ty = resolved; } result } fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) { self.result.type_of_expr.insert(expr, ty); } fn write_method_resolution(&mut self, expr: ExprId, func: Function) { self.result.method_resolutions.insert(expr, func); } fn write_field_resolution(&mut self, expr: ExprId, field: StructField) { self.result.field_resolutions.insert(expr, field); } fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantDef) { self.result.variant_resolutions.insert(id, variant); } fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItem) { self.result.assoc_resolutions.insert(id, item); } fn write_pat_ty(&mut self, pat: PatId, ty: Ty) { self.result.type_of_pat.insert(pat, ty); } fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) { self.result.diagnostics.push(diagnostic); } fn make_ty(&mut self, type_ref: &TypeRef) -> Ty { let ty = Ty::from_hir( self.db, // FIXME use right resolver for block &self.resolver, type_ref, ); let ty = self.insert_type_vars(ty); self.normalize_associated_types_in(ty) } fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool { substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth)) } fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { self.unify_inner(ty1, ty2, 0) } fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool { if depth > 1000 { // prevent stackoverflows panic!("infinite recursion in unification"); } if ty1 == ty2 { return true; } // try to resolve type vars first let ty1 = self.resolve_ty_shallow(ty1); let ty2 = self.resolve_ty_shallow(ty2); match (&*ty1, &*ty2) { (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => { self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1) } _ => self.unify_inner_trivial(&ty1, &ty2), } } fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool { match (ty1, ty2) { (Ty::Unknown, _) | (_, Ty::Unknown) => true, (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2))) | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2))) | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) | ( Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)), Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)), ) => { // both type vars are unknown since we tried to resolve them self.var_unification_table.union(*tv1, *tv2); true } // The order of MaybeNeverTypeVar matters here. // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar. // Unifying MaybeNeverTypeVar and other concrete type will let the former become it. (Ty::Infer(InferTy::TypeVar(tv)), other) | (other, Ty::Infer(InferTy::TypeVar(tv))) | (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other) | (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv))) | (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_))) | (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv))) | (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_))) | (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => { // the type var is unknown since we tried to resolve it self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone())); true } _ => false, } } fn new_type_var(&mut self) -> Ty { Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } fn new_integer_var(&mut self) -> Ty { Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } fn new_float_var(&mut self) -> Ty { Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } fn new_maybe_never_type_var(&mut self) -> Ty { Ty::Infer(InferTy::MaybeNeverTypeVar( self.var_unification_table.new_key(TypeVarValue::Unknown), )) } /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it. fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty { match ty { Ty::Unknown => self.new_type_var(), Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(primitive::UncertainIntTy::Unknown), .. }) => self.new_integer_var(), Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(primitive::UncertainFloatTy::Unknown), .. }) => self.new_float_var(), _ => ty, } } fn insert_type_vars(&mut self, ty: Ty) -> Ty { ty.fold(&mut |ty| self.insert_type_vars_shallow(ty)) } fn resolve_obligations_as_possible(&mut self) { let obligations = mem::replace(&mut self.obligations, Vec::new()); for obligation in obligations { let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone()); let canonicalized = self.canonicalizer().canonicalize_obligation(in_env); let solution = self.db.trait_solve(self.resolver.krate().unwrap(), canonicalized.value.clone()); match solution { Some(Solution::Unique(substs)) => { canonicalized.apply_solution(self, substs.0); } Some(Solution::Ambig(Guidance::Definite(substs))) => { canonicalized.apply_solution(self, substs.0); self.obligations.push(obligation); } Some(_) => { // FIXME use this when trying to resolve everything at the end self.obligations.push(obligation); } None => { // FIXME obligation cannot be fulfilled => diagnostic } }; } } /// Resolves the type as far as currently possible, replacing type variables /// by their known types. All types returned by the infer_* functions should /// be resolved as far as possible, i.e. contain no type variables with /// known type. fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { self.resolve_obligations_as_possible(); ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { tested_by!(type_var_cycles_resolve_as_possible); // recursive type return tv.fallback_value(); } if let Some(known_ty) = self.var_unification_table.inlined_probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { ty } } _ => ty, }) } /// If `ty` is a type variable with known type, returns that type; /// otherwise, return ty. fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> { let mut ty = Cow::Borrowed(ty); // The type variable could resolve to a int/float variable. Hence try // resolving up to three times; each type of variable shouldn't occur // more than once for i in 0..3 { if i > 0 { tested_by!(type_var_resolves_to_int_var); } match &*ty { Ty::Infer(tv) => { let inner = tv.to_inner(); match self.var_unification_table.inlined_probe_value(inner).known() { Some(known_ty) => { // The known_ty can't be a type var itself ty = Cow::Owned(known_ty.clone()); } _ => return ty, } } _ => return ty, } } log::error!("Inference variable still not resolved: {:?}", ty); ty } /// Recurses through the given type, normalizing associated types mentioned /// in it by replacing them by type variables and registering obligations to /// resolve later. This should be done once for every type we get from some /// type annotation (e.g. from a let type annotation, field type or function /// call). `make_ty` handles this already, but e.g. for field types we need /// to do it as well. fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty { let ty = self.resolve_ty_as_possible(&mut vec![], ty); ty.fold(&mut |ty| match ty { Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty), _ => ty, }) } fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty { let var = self.new_type_var(); let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() }; let obligation = Obligation::Projection(predicate); self.obligations.push(obligation); var } /// Resolves the type completely; type variables without known type are /// replaced by Ty::Unknown. fn resolve_ty_completely(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { tested_by!(type_var_cycles_resolve_completely); // recursive type return tv.fallback_value(); } if let Some(known_ty) = self.var_unification_table.inlined_probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_completely(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { tv.fallback_value() } } _ => ty, }) } fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option) { let path = match path { Some(path) => path, None => return (Ty::Unknown, None), }; let resolver = &self.resolver; let def: TypableDef = // FIXME: this should resolve assoc items as well, see this example: // https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521 match resolver.resolve_path_in_type_ns_fully(self.db, &path) { Some(TypeNs::Adt(Adt::Struct(it))) => it.into(), Some(TypeNs::Adt(Adt::Union(it))) => it.into(), Some(TypeNs::AdtSelfType(adt)) => adt.into(), Some(TypeNs::EnumVariant(it)) => it.into(), Some(TypeNs::TypeAlias(it)) => it.into(), Some(TypeNs::SelfType(_)) | Some(TypeNs::GenericParam(_)) | Some(TypeNs::BuiltinType(_)) | Some(TypeNs::Trait(_)) | Some(TypeNs::Adt(Adt::Enum(_))) | None => { return (Ty::Unknown, None) } }; // FIXME remove the duplication between here and `Ty::from_path`? let substs = Ty::substs_from_path(self.db, resolver, path, def); match def { TypableDef::Adt(Adt::Struct(s)) => { let ty = s.ty(self.db); let ty = self.insert_type_vars(ty.apply_substs(substs)); (ty, Some(s.into())) } TypableDef::EnumVariant(var) => { let ty = var.parent_enum(self.db).ty(self.db); let ty = self.insert_type_vars(ty.apply_substs(substs)); (ty, Some(var.into())) } TypableDef::Adt(Adt::Enum(_)) | TypableDef::Adt(Adt::Union(_)) | TypableDef::TypeAlias(_) | TypableDef::Function(_) | TypableDef::Const(_) | TypableDef::Static(_) | TypableDef::BuiltinType(_) => (Ty::Unknown, None), } } fn collect_const(&mut self, data: &ConstData) { self.return_ty = self.make_ty(data.type_ref()); } fn collect_fn(&mut self, data: &FnData) { let body = Arc::clone(&self.body); // avoid borrow checker problem for (type_ref, pat) in data.params().iter().zip(body.params()) { let ty = self.make_ty(type_ref); self.infer_pat(*pat, &ty, BindingMode::default()); } self.return_ty = self.make_ty(data.ret_type()); } fn infer_body(&mut self) { self.infer_expr(self.body.body_expr(), &Expectation::has_type(self.return_ty.clone())); } fn resolve_into_iter_item(&self) -> Option { let path = known::std_iter_into_iterator(); let trait_ = self.resolver.resolve_known_trait(self.db, &path)?; trait_.associated_type_by_name(self.db, &name::ITEM_TYPE) } fn resolve_ops_try_ok(&self) -> Option { let path = known::std_ops_try(); let trait_ = self.resolver.resolve_known_trait(self.db, &path)?; trait_.associated_type_by_name(self.db, &name::OK_TYPE) } fn resolve_future_future_output(&self) -> Option { let path = known::std_future_future(); let trait_ = self.resolver.resolve_known_trait(self.db, &path)?; trait_.associated_type_by_name(self.db, &name::OUTPUT_TYPE) } fn resolve_boxed_box(&self) -> Option { let path = known::std_boxed_box(); let struct_ = self.resolver.resolve_known_struct(self.db, &path)?; Some(Adt::Struct(struct_)) } } /// The ID of a type variable. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] pub struct TypeVarId(pub(super) u32); impl UnifyKey for TypeVarId { type Value = TypeVarValue; fn index(&self) -> u32 { self.0 } fn from_index(i: u32) -> Self { TypeVarId(i) } fn tag() -> &'static str { "TypeVarId" } } /// The value of a type variable: either we already know the type, or we don't /// know it yet. #[derive(Clone, PartialEq, Eq, Debug)] pub enum TypeVarValue { Known(Ty), Unknown, } impl TypeVarValue { fn known(&self) -> Option<&Ty> { match self { TypeVarValue::Known(ty) => Some(ty), TypeVarValue::Unknown => None, } } } impl UnifyValue for TypeVarValue { type Error = NoError; fn unify_values(value1: &Self, value2: &Self) -> Result { match (value1, value2) { // We should never equate two type variables, both of which have // known types. Instead, we recursively equate those types. (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!( "equating two type variables, both of which have known types: {:?} and {:?}", t1, t2 ), // If one side is known, prefer that one. (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()), (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()), (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown), } } } /// The kinds of placeholders we need during type inference. There's separate /// values for general types, and for integer and float variables. The latter /// two are used for inference of literal values (e.g. `100` could be one of /// several integer types). #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub enum InferTy { TypeVar(TypeVarId), IntVar(TypeVarId), FloatVar(TypeVarId), MaybeNeverTypeVar(TypeVarId), } impl InferTy { fn to_inner(self) -> TypeVarId { match self { InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) | InferTy::MaybeNeverTypeVar(ty) => ty, } } fn fallback_value(self) -> Ty { match self { InferTy::TypeVar(..) => Ty::Unknown, InferTy::IntVar(..) => { Ty::simple(TypeCtor::Int(primitive::UncertainIntTy::Known(primitive::IntTy::i32()))) } InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float( primitive::UncertainFloatTy::Known(primitive::FloatTy::f64()), )), InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never), } } } /// When inferring an expression, we propagate downward whatever type hint we /// are able in the form of an `Expectation`. #[derive(Clone, PartialEq, Eq, Debug)] struct Expectation { ty: Ty, // FIXME: In some cases, we need to be aware whether the expectation is that // the type match exactly what we passed, or whether it just needs to be // coercible to the expected type. See Expectation::rvalue_hint in rustc. } impl Expectation { /// The expectation that the type of the expression needs to equal the given /// type. fn has_type(ty: Ty) -> Self { Expectation { ty } } /// This expresses no expectation on the type. fn none() -> Self { Expectation { ty: Ty::Unknown } } } mod diagnostics { use crate::{ db::HirDatabase, diagnostics::{DiagnosticSink, NoSuchField}, expr::ExprId, Function, HasSource, }; #[derive(Debug, PartialEq, Eq, Clone)] pub(super) enum InferenceDiagnostic { NoSuchField { expr: ExprId, field: usize }, } impl InferenceDiagnostic { pub(super) fn add_to( &self, db: &impl HirDatabase, owner: Function, sink: &mut DiagnosticSink, ) { match self { InferenceDiagnostic::NoSuchField { expr, field } => { let file = owner.source(db).file_id; let field = owner.body_source_map(db).field_syntax(*expr, *field); sink.push(NoSuchField { file, field }) } } } } }