//! This module is concerned with finding methods that a given type provides. //! For details about how this works in rustc, see the method lookup page in the //! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html) //! and the corresponding code mostly in librustc_typeck/check/method/probe.rs. use std::sync::Arc; use arrayvec::ArrayVec; use hir_def::CrateModuleId; use rustc_hash::FxHashMap; use super::{autoderef, lower, Canonical, InEnvironment, TraitEnvironment, TraitRef}; use crate::{ db::HirDatabase, impl_block::{ImplBlock, ImplId}, resolve::Resolver, ty::primitive::{FloatBitness, UncertainFloatTy, UncertainIntTy}, ty::{Ty, TypeCtor}, AssocItem, Crate, Function, Module, Mutability, Name, Trait, }; /// This is used as a key for indexing impls. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum TyFingerprint { Apply(TypeCtor), } impl TyFingerprint { /// Creates a TyFingerprint for looking up an impl. Only certain types can /// have impls: if we have some `struct S`, we can have an `impl S`, but not /// `impl &S`. Hence, this will return `None` for reference types and such. fn for_impl(ty: &Ty) -> Option { match ty { Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)), _ => None, } } } #[derive(Debug, PartialEq, Eq)] pub struct CrateImplBlocks { /// To make sense of the CrateModuleIds, we need the source root. krate: Crate, impls: FxHashMap>, impls_by_trait: FxHashMap>, } impl CrateImplBlocks { pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator + 'a { let fingerprint = TyFingerprint::for_impl(ty); fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map( move |(module_id, impl_id)| { let module = Module::new(self.krate, *module_id); ImplBlock::from_id(module, *impl_id) }, ) } pub fn lookup_impl_blocks_for_trait<'a>( &'a self, tr: Trait, ) -> impl Iterator + 'a { self.impls_by_trait.get(&tr).into_iter().flat_map(|i| i.iter()).map( move |(module_id, impl_id)| { let module = Module::new(self.krate, *module_id); ImplBlock::from_id(module, *impl_id) }, ) } pub fn all_impls<'a>(&'a self) -> impl Iterator + 'a { self.impls.values().chain(self.impls_by_trait.values()).flat_map(|i| i.iter()).map( move |(module_id, impl_id)| { let module = Module::new(self.krate, *module_id); ImplBlock::from_id(module, *impl_id) }, ) } fn collect_recursive(&mut self, db: &impl HirDatabase, module: Module) { let module_impl_blocks = db.impls_in_module(module); for (impl_id, _) in module_impl_blocks.impls.iter() { let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id); let target_ty = impl_block.target_ty(db); if impl_block.target_trait(db).is_some() { if let Some(tr) = impl_block.target_trait_ref(db) { self.impls_by_trait .entry(tr.trait_) .or_insert_with(Vec::new) .push((module.id.module_id, impl_id)); } } else { if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) { self.impls .entry(target_ty_fp) .or_insert_with(Vec::new) .push((module.id.module_id, impl_id)); } } } for child in module.children(db) { self.collect_recursive(db, child); } } pub(crate) fn impls_in_crate_query( db: &impl HirDatabase, krate: Crate, ) -> Arc { let mut crate_impl_blocks = CrateImplBlocks { krate, impls: FxHashMap::default(), impls_by_trait: FxHashMap::default(), }; if let Some(module) = krate.root_module(db) { crate_impl_blocks.collect_recursive(db, module); } Arc::new(crate_impl_blocks) } } fn def_crates(db: &impl HirDatabase, cur_crate: Crate, ty: &Ty) -> Option> { // Types like slice can have inherent impls in several crates, (core and alloc). // The corresponding impls are marked with lang items, so we can use them to find the required crates. macro_rules! lang_item_crate { ($db:expr, $cur_crate:expr, $($name:expr),+ $(,)?) => {{ let mut v = ArrayVec::<[Crate; 2]>::new(); $( v.extend($db.lang_item($cur_crate, $name.into()).and_then(|item| item.krate($db))); )+ Some(v) }}; } match ty { Ty::Apply(a_ty) => match a_ty.ctor { TypeCtor::Adt(def_id) => Some(std::iter::once(def_id.krate(db)?).collect()), TypeCtor::Bool => lang_item_crate!(db, cur_crate, "bool"), TypeCtor::Char => lang_item_crate!(db, cur_crate, "char"), TypeCtor::Float(UncertainFloatTy::Known(f)) => match f.bitness { // There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime) FloatBitness::X32 => lang_item_crate!(db, cur_crate, "f32", "f32_runtime"), FloatBitness::X64 => lang_item_crate!(db, cur_crate, "f64", "f64_runtime"), }, TypeCtor::Int(UncertainIntTy::Known(i)) => { lang_item_crate!(db, cur_crate, i.ty_to_string()) } TypeCtor::Str => lang_item_crate!(db, cur_crate, "str_alloc", "str"), TypeCtor::Slice => lang_item_crate!(db, cur_crate, "slice_alloc", "slice"), TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!(db, cur_crate, "const_ptr"), TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!(db, cur_crate, "mut_ptr"), _ => None, }, _ => None, } } /// Look up the method with the given name, returning the actual autoderefed /// receiver type (but without autoref applied yet). pub(crate) fn lookup_method( ty: &Canonical, db: &impl HirDatabase, name: &Name, resolver: &Resolver, ) -> Option<(Ty, Function)> { iterate_method_candidates(ty, db, resolver, Some(name), LookupMode::MethodCall, |ty, f| { if let AssocItem::Function(f) = f { Some((ty.clone(), f)) } else { None } }) } /// Whether we're looking up a dotted method call (like `v.len()`) or a path /// (like `Vec::new`). #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum LookupMode { /// Looking up a method call like `v.len()`: We only consider candidates /// that have a `self` parameter, and do autoderef. MethodCall, /// Looking up a path like `Vec::new` or `Vec::default`: We consider all /// candidates including associated constants, but don't do autoderef. Path, } // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplBlocks`. pub(crate) fn iterate_method_candidates( ty: &Canonical, db: &impl HirDatabase, resolver: &Resolver, name: Option<&Name>, mode: LookupMode, mut callback: impl FnMut(&Ty, AssocItem) -> Option, ) -> Option { let krate = resolver.krate()?; match mode { LookupMode::MethodCall => { // For method calls, rust first does any number of autoderef, and then one // autoref (i.e. when the method takes &self or &mut self). We just ignore // the autoref currently -- when we find a method matching the given name, // we assume it fits. // Also note that when we've got a receiver like &S, even if the method we // find in the end takes &self, we still do the autoderef step (just as // rustc does an autoderef and then autoref again). for derefed_ty in autoderef::autoderef(db, resolver, ty.clone()) { if let Some(result) = iterate_inherent_methods(&derefed_ty, db, name, mode, krate, &mut callback) { return Some(result); } if let Some(result) = iterate_trait_method_candidates( &derefed_ty, db, resolver, name, mode, &mut callback, ) { return Some(result); } } } LookupMode::Path => { // No autoderef for path lookups if let Some(result) = iterate_inherent_methods(&ty, db, name, mode, krate, &mut callback) { return Some(result); } if let Some(result) = iterate_trait_method_candidates(&ty, db, resolver, name, mode, &mut callback) { return Some(result); } } } None } fn iterate_trait_method_candidates( ty: &Canonical, db: &impl HirDatabase, resolver: &Resolver, name: Option<&Name>, mode: LookupMode, mut callback: impl FnMut(&Ty, AssocItem) -> Option, ) -> Option { let krate = resolver.krate()?; // FIXME: maybe put the trait_env behind a query (need to figure out good input parameters for that) let env = lower::trait_env(db, resolver); // if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope let inherent_trait = ty.value.inherent_trait().into_iter(); // if we have `T: Trait` in the param env, the trait doesn't need to be in scope let traits_from_env = env .trait_predicates_for_self_ty(&ty.value) .map(|tr| tr.trait_) .flat_map(|t| t.all_super_traits(db)); let traits = inherent_trait.chain(traits_from_env).chain(resolver.traits_in_scope(db)); 'traits: for t in traits { let data = t.trait_data(db); // FIXME this is a bit of a hack, since Chalk should say the same thing // anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet let inherently_implemented = ty.value.inherent_trait() == Some(t); // we'll be lazy about checking whether the type implements the // trait, but if we find out it doesn't, we'll skip the rest of the // iteration let mut known_implemented = inherently_implemented; for &item in data.items() { if !is_valid_candidate(db, name, mode, item) { continue; } if !known_implemented { let goal = generic_implements_goal(db, env.clone(), t, ty.clone()); if db.trait_solve(krate, goal).is_none() { continue 'traits; } } known_implemented = true; if let Some(result) = callback(&ty.value, item) { return Some(result); } } } None } fn iterate_inherent_methods( ty: &Canonical, db: &impl HirDatabase, name: Option<&Name>, mode: LookupMode, krate: Crate, mut callback: impl FnMut(&Ty, AssocItem) -> Option, ) -> Option { for krate in def_crates(db, krate, &ty.value)? { let impls = db.impls_in_crate(krate); for impl_block in impls.lookup_impl_blocks(&ty.value) { for item in impl_block.items(db) { if !is_valid_candidate(db, name, mode, item) { continue; } if let Some(result) = callback(&ty.value, item) { return Some(result); } } } } None } fn is_valid_candidate( db: &impl HirDatabase, name: Option<&Name>, mode: LookupMode, item: AssocItem, ) -> bool { match item { AssocItem::Function(m) => { let data = m.data(db); name.map_or(true, |name| data.name() == name) && (data.has_self_param() || mode == LookupMode::Path) } AssocItem::Const(c) => { name.map_or(true, |name| Some(name) == c.name(db).as_ref()) && (mode == LookupMode::Path) } _ => false, } } pub(crate) fn implements_trait( ty: &Canonical, db: &impl HirDatabase, resolver: &Resolver, krate: Crate, trait_: Trait, ) -> bool { if ty.value.inherent_trait() == Some(trait_) { // FIXME this is a bit of a hack, since Chalk should say the same thing // anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet return true; } let env = lower::trait_env(db, resolver); let goal = generic_implements_goal(db, env, trait_, ty.clone()); let solution = db.trait_solve(krate, goal); solution.is_some() } impl Ty { // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplBlocks`. pub fn iterate_impl_items( self, db: &impl HirDatabase, krate: Crate, mut callback: impl FnMut(AssocItem) -> Option, ) -> Option { for krate in def_crates(db, krate, &self)? { let impls = db.impls_in_crate(krate); for impl_block in impls.lookup_impl_blocks(&self) { for item in impl_block.items(db) { if let Some(result) = callback(item) { return Some(result); } } } } None } } /// This creates Substs for a trait with the given Self type and type variables /// for all other parameters, to query Chalk with it. fn generic_implements_goal( db: &impl HirDatabase, env: Arc, trait_: Trait, self_ty: Canonical, ) -> Canonical> { let num_vars = self_ty.num_vars; let substs = super::Substs::build_for_def(db, trait_) .push(self_ty.value) .fill_with_bound_vars(num_vars as u32) .build(); let num_vars = substs.len() - 1 + self_ty.num_vars; let trait_ref = TraitRef { trait_, substs }; let obligation = super::Obligation::Trait(trait_ref); Canonical { num_vars, value: InEnvironment::new(env, obligation) } }