//! Chalk integration. use std::sync::{Arc, Mutex}; use chalk_ir::{TypeId, TraitId, StructId, ImplId, TypeKindId, ProjectionTy, Parameter, Identifier, cast::Cast}; use chalk_rust_ir::{AssociatedTyDatum, TraitDatum, StructDatum, ImplDatum}; use crate::{Crate, Trait, db::HirDatabase, HasGenericParams, ImplBlock}; use super::{TraitRef, Ty, ApplicationTy, TypeCtor, Substs, infer::Canonical}; #[derive(Debug, Copy, Clone)] struct ChalkContext<'a, DB> { db: &'a DB, krate: Crate, } pub(crate) trait ToChalk { type Chalk; fn to_chalk(self, db: &impl HirDatabase) -> Self::Chalk; fn from_chalk(db: &impl HirDatabase, chalk: Self::Chalk) -> Self; } pub(crate) fn from_chalk(db: &impl HirDatabase, chalk: ChalkT) -> T where T: ToChalk, { T::from_chalk(db, chalk) } impl ToChalk for Ty { type Chalk = chalk_ir::Ty; fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::Ty { match self { Ty::Apply(apply_ty) => chalk_ir::Ty::Apply(apply_ty.to_chalk(db)), Ty::Param { idx, .. } => { chalk_ir::PlaceholderIndex { ui: chalk_ir::UniverseIndex::ROOT, idx: idx as usize } .to_ty() } Ty::Bound(idx) => chalk_ir::Ty::BoundVar(idx as usize), Ty::Infer(_infer_ty) => panic!("uncanonicalized infer ty"), Ty::Unknown => unimplemented!(), // TODO turn into placeholder? } } fn from_chalk(db: &impl HirDatabase, chalk: chalk_ir::Ty) -> Self { match chalk { chalk_ir::Ty::Apply(apply_ty) => { match apply_ty.name { // FIXME handle TypeKindId::Trait/Type here chalk_ir::TypeName::TypeKindId(_) => Ty::Apply(from_chalk(db, apply_ty)), chalk_ir::TypeName::AssociatedType(_) => unimplemented!(), chalk_ir::TypeName::Placeholder(idx) => { assert_eq!(idx.ui, chalk_ir::UniverseIndex::ROOT); Ty::Param { idx: idx.idx as u32, name: crate::Name::missing() } } } } chalk_ir::Ty::Projection(_) => unimplemented!(), chalk_ir::Ty::UnselectedProjection(_) => unimplemented!(), chalk_ir::Ty::ForAll(_) => unimplemented!(), chalk_ir::Ty::BoundVar(idx) => Ty::Bound(idx as u32), chalk_ir::Ty::InferenceVar(_iv) => panic!("unexpected chalk infer ty"), } } } impl ToChalk for ApplicationTy { type Chalk = chalk_ir::ApplicationTy; fn to_chalk(self: ApplicationTy, db: &impl HirDatabase) -> chalk_ir::ApplicationTy { let struct_id = self.ctor.to_chalk(db); let name = chalk_ir::TypeName::TypeKindId(struct_id.into()); let parameters = self.parameters.to_chalk(db); chalk_ir::ApplicationTy { name, parameters } } fn from_chalk(db: &impl HirDatabase, apply_ty: chalk_ir::ApplicationTy) -> ApplicationTy { let ctor = match apply_ty.name { chalk_ir::TypeName::TypeKindId(chalk_ir::TypeKindId::StructId(struct_id)) => { from_chalk(db, struct_id) } chalk_ir::TypeName::TypeKindId(_) => unimplemented!(), chalk_ir::TypeName::Placeholder(_) => unimplemented!(), chalk_ir::TypeName::AssociatedType(_) => unimplemented!(), }; let parameters = from_chalk(db, apply_ty.parameters); ApplicationTy { ctor, parameters } } } impl ToChalk for Substs { type Chalk = Vec; fn to_chalk(self, db: &impl HirDatabase) -> Vec { self.iter().map(|ty| ty.clone().to_chalk(db).cast()).collect() } fn from_chalk(db: &impl HirDatabase, parameters: Vec) -> Substs { parameters .into_iter() .map(|p| match p { chalk_ir::Parameter(chalk_ir::ParameterKind::Ty(ty)) => from_chalk(db, ty), chalk_ir::Parameter(chalk_ir::ParameterKind::Lifetime(_)) => unimplemented!(), }) .collect::>() .into() } } impl ToChalk for TraitRef { type Chalk = chalk_ir::TraitRef; fn to_chalk(self: TraitRef, db: &impl HirDatabase) -> chalk_ir::TraitRef { let trait_id = self.trait_.to_chalk(db); let parameters = self.substs.to_chalk(db); chalk_ir::TraitRef { trait_id, parameters } } fn from_chalk(db: &impl HirDatabase, trait_ref: chalk_ir::TraitRef) -> Self { let trait_ = from_chalk(db, trait_ref.trait_id); let substs = from_chalk(db, trait_ref.parameters); TraitRef { trait_, substs } } } impl ToChalk for Trait { type Chalk = TraitId; fn to_chalk(self, _db: &impl HirDatabase) -> TraitId { self.id.into() } fn from_chalk(_db: &impl HirDatabase, trait_id: TraitId) -> Trait { Trait { id: trait_id.into() } } } impl ToChalk for TypeCtor { type Chalk = chalk_ir::StructId; fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::StructId { db.intern_type_ctor(self).into() } fn from_chalk(db: &impl HirDatabase, struct_id: chalk_ir::StructId) -> TypeCtor { db.lookup_intern_type_ctor(struct_id.into()) } } impl ToChalk for ImplBlock { type Chalk = chalk_ir::ImplId; fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::ImplId { db.intern_impl_block(self).into() } fn from_chalk(db: &impl HirDatabase, impl_id: chalk_ir::ImplId) -> ImplBlock { db.lookup_intern_impl_block(impl_id.into()) } } fn make_binders(value: T, num_vars: usize) -> chalk_ir::Binders { chalk_ir::Binders { value, binders: std::iter::repeat(chalk_ir::ParameterKind::Ty(())).take(num_vars).collect(), } } impl<'a, DB> chalk_solve::RustIrDatabase for ChalkContext<'a, DB> where DB: HirDatabase, { fn associated_ty_data(&self, _ty: TypeId) -> Arc { unimplemented!() } fn trait_datum(&self, trait_id: TraitId) -> Arc { eprintln!("trait_datum {:?}", trait_id); let trait_: Trait = from_chalk(self.db, trait_id); let generic_params = trait_.generic_params(self.db); let bound_vars = Substs::bound_vars(&generic_params); let trait_ref = trait_.trait_ref(self.db).subst(&bound_vars).to_chalk(self.db); let flags = chalk_rust_ir::TraitFlags { // FIXME set these flags correctly auto: false, marker: false, upstream: trait_.module(self.db).krate(self.db) != Some(self.krate), fundamental: false, }; let where_clauses = Vec::new(); // FIXME add where clauses let trait_datum_bound = chalk_rust_ir::TraitDatumBound { trait_ref, where_clauses, flags }; let trait_datum = TraitDatum { binders: make_binders(trait_datum_bound, bound_vars.len()) }; Arc::new(trait_datum) } fn struct_datum(&self, struct_id: StructId) -> Arc { eprintln!("struct_datum {:?}", struct_id); let type_ctor = from_chalk(self.db, struct_id); // TODO might be nicer if we can create a fake GenericParams for the TypeCtor let (num_params, upstream) = match type_ctor { TypeCtor::Bool | TypeCtor::Char | TypeCtor::Int(_) | TypeCtor::Float(_) | TypeCtor::Never | TypeCtor::Str => (0, true), TypeCtor::Slice | TypeCtor::Array | TypeCtor::RawPtr(_) | TypeCtor::Ref(_) => (1, true), TypeCtor::FnPtr | TypeCtor::Tuple => unimplemented!(), // FIXME tuples and FnPtr are currently variadic... we need to make the parameter number explicit TypeCtor::FnDef(_) => unimplemented!(), TypeCtor::Adt(adt) => { let generic_params = adt.generic_params(self.db); ( generic_params.count_params_including_parent(), adt.krate(self.db) != Some(self.krate), ) } }; let flags = chalk_rust_ir::StructFlags { upstream, // FIXME set fundamental flag correctly fundamental: false, }; let where_clauses = Vec::new(); // FIXME add where clauses let ty = ApplicationTy { ctor: type_ctor, parameters: (0..num_params).map(|i| Ty::Bound(i as u32)).collect::>().into(), }; let struct_datum_bound = chalk_rust_ir::StructDatumBound { self_ty: ty.to_chalk(self.db), fields: Vec::new(), // FIXME add fields (only relevant for auto traits) where_clauses, flags, }; let struct_datum = StructDatum { binders: make_binders(struct_datum_bound, num_params) }; Arc::new(struct_datum) } fn impl_datum(&self, impl_id: ImplId) -> Arc { eprintln!("impl_datum {:?}", impl_id); let impl_block: ImplBlock = from_chalk(self.db, impl_id); let generic_params = impl_block.generic_params(self.db); let bound_vars = Substs::bound_vars(&generic_params); let trait_ref = impl_block .target_trait_ref(self.db) .expect("FIXME handle unresolved impl block trait ref") .subst(&bound_vars); let impl_type = if impl_block.module().krate(self.db) == Some(self.krate) { chalk_rust_ir::ImplType::Local } else { chalk_rust_ir::ImplType::External }; let impl_datum_bound = chalk_rust_ir::ImplDatumBound { // FIXME handle negative impls (impl !Sync for Foo) trait_ref: chalk_rust_ir::PolarizedTraitRef::Positive(trait_ref.to_chalk(self.db)), where_clauses: Vec::new(), // FIXME add where clauses associated_ty_values: Vec::new(), // FIXME add associated type values impl_type, }; let impl_datum = ImplDatum { binders: make_binders(impl_datum_bound, bound_vars.len()) }; Arc::new(impl_datum) } fn impls_for_trait(&self, trait_id: TraitId) -> Vec { eprintln!("impls_for_trait {:?}", trait_id); let trait_ = from_chalk(self.db, trait_id); self.db .impls_for_trait(self.krate, trait_) .iter() // FIXME temporary hack -- as long as we're not lowering where clauses // correctly, ignore impls with them completely so as to not treat // impl Trait for T where T: ... as a blanket impl on all types .filter(|impl_block| impl_block.generic_params(self.db).where_predicates.is_empty()) .map(|impl_block| impl_block.to_chalk(self.db)) .collect() } fn impl_provided_for(&self, auto_trait_id: TraitId, struct_id: StructId) -> bool { eprintln!("impl_provided_for {:?}, {:?}", auto_trait_id, struct_id); false // FIXME } fn type_name(&self, _id: TypeKindId) -> Identifier { unimplemented!() } fn split_projection<'p>( &self, projection: &'p ProjectionTy, ) -> (Arc, &'p [Parameter], &'p [Parameter]) { eprintln!("split_projection {:?}", projection); unimplemented!() } } pub(crate) fn solver(_db: &impl HirDatabase, _krate: Crate) -> Arc> { // krate parameter is just so we cache a unique solver per crate let solver_choice = chalk_solve::SolverChoice::SLG { max_size: 10 }; Arc::new(Mutex::new(solver_choice.into_solver())) } /// Collects impls for the given trait in the whole dependency tree of `krate`. pub(crate) fn impls_for_trait( db: &impl HirDatabase, krate: Crate, trait_: Trait, ) -> Arc<[ImplBlock]> { let mut impls = Vec::new(); // We call the query recursively here. On the one hand, this means we can // reuse results from queries for different crates; on the other hand, this // will only ever get called for a few crates near the root of the tree (the // ones the user is editing), so this may actually be a waste of memory. I'm // doing it like this mainly for simplicity for now. for dep in krate.dependencies(db) { impls.extend(db.impls_for_trait(dep.krate, trait_).iter()); } let crate_impl_blocks = db.impls_in_crate(krate); impls.extend(crate_impl_blocks.lookup_impl_blocks_for_trait(&trait_)); impls.into() } fn solve( db: &impl HirDatabase, krate: Crate, goal: &chalk_ir::UCanonical>, ) -> Option { let context = ChalkContext { db, krate }; let solver = db.chalk_solver(krate); let solution = solver.lock().unwrap().solve(&context, goal); eprintln!("solve({:?}) => {:?}", goal, solution); solution } /// Something that needs to be proven (by Chalk) during type checking, e.g. that /// a certain type implements a certain trait. Proving the Obligation might /// result in additional information about inference variables. #[derive(Clone, Debug, PartialEq, Eq)] pub enum Obligation { /// Prove that a certain type implements a trait (the type is the `Self` type /// parameter to the `TraitRef`). Trait(TraitRef), } /// Check using Chalk whether trait is implemented for given parameters including `Self` type. pub(crate) fn implements( db: &impl HirDatabase, krate: Crate, trait_ref: Canonical, ) -> Option { let goal: chalk_ir::Goal = trait_ref.value.to_chalk(db).cast(); eprintln!("goal: {:?}", goal); let env = chalk_ir::Environment::new(); let in_env = chalk_ir::InEnvironment::new(&env, goal); let parameter = chalk_ir::ParameterKind::Ty(chalk_ir::UniverseIndex::ROOT); let canonical = chalk_ir::Canonical { value: in_env, binders: vec![parameter; trait_ref.num_vars] }; // We currently don't deal with universes (I think / hope they're not yet // relevant for our use cases?) let u_canonical = chalk_ir::UCanonical { canonical, universes: 1 }; let solution = solve(db, krate, &u_canonical); solution.map(|solution| solution_from_chalk(db, solution)) } fn solution_from_chalk( db: &impl HirDatabase, solution: chalk_solve::Solution, ) -> Solution { let convert_subst = |subst: chalk_ir::Canonical| { let value = subst .value .parameters .into_iter() .map(|p| { let ty = match p { chalk_ir::Parameter(chalk_ir::ParameterKind::Ty(ty)) => from_chalk(db, ty), chalk_ir::Parameter(chalk_ir::ParameterKind::Lifetime(_)) => unimplemented!(), }; ty }) .collect(); let result = Canonical { value, num_vars: subst.binders.len() }; SolutionVariables(result) }; match solution { chalk_solve::Solution::Unique(constr_subst) => { let subst = chalk_ir::Canonical { value: constr_subst.value.subst, binders: constr_subst.binders, }; Solution::Unique(convert_subst(subst)) } chalk_solve::Solution::Ambig(chalk_solve::Guidance::Definite(subst)) => { Solution::Ambig(Guidance::Definite(convert_subst(subst))) } chalk_solve::Solution::Ambig(chalk_solve::Guidance::Suggested(subst)) => { Solution::Ambig(Guidance::Suggested(convert_subst(subst))) } chalk_solve::Solution::Ambig(chalk_solve::Guidance::Unknown) => { Solution::Ambig(Guidance::Unknown) } } } #[derive(Clone, Debug, PartialEq, Eq)] pub(crate) struct SolutionVariables(pub Canonical>); #[derive(Clone, Debug, PartialEq, Eq)] /// A (possible) solution for a proposed goal. pub(crate) enum Solution { /// The goal indeed holds, and there is a unique value for all existential /// variables. Unique(SolutionVariables), /// The goal may be provable in multiple ways, but regardless we may have some guidance /// for type inference. In this case, we don't return any lifetime /// constraints, since we have not "committed" to any particular solution /// yet. Ambig(Guidance), } #[derive(Clone, Debug, PartialEq, Eq)] /// When a goal holds ambiguously (e.g., because there are multiple possible /// solutions), we issue a set of *guidance* back to type inference. pub(crate) enum Guidance { /// The existential variables *must* have the given values if the goal is /// ever to hold, but that alone isn't enough to guarantee the goal will /// actually hold. Definite(SolutionVariables), /// There are multiple plausible values for the existentials, but the ones /// here are suggested as the preferred choice heuristically. These should /// be used for inference fallback only. Suggested(SolutionVariables), /// There's no useful information to feed back to type inference Unknown, }