//! Helper functions for working with def, which don't need to be a separate //! query, but can't be computed directly from `*Data` (ie, which need a `db`). use hir_def::{ db::DefDatabase, resolver::{HasResolver, TypeNs}, type_ref::TypeRef, TraitId, TypeAliasId, }; use hir_expand::name::{self, Name}; // FIXME: this is wrong, b/c it can't express `trait T: PartialEq<()>`. // We should return a `TraitREf` here. fn direct_super_traits(db: &impl DefDatabase, trait_: TraitId) -> Vec { let resolver = trait_.resolver(db); // returning the iterator directly doesn't easily work because of // lifetime problems, but since there usually shouldn't be more than a // few direct traits this should be fine (we could even use some kind of // SmallVec if performance is a concern) db.generic_params(trait_.into()) .where_predicates .iter() .filter_map(|pred| match &pred.type_ref { TypeRef::Path(p) if p.as_ident() == Some(&name::SELF_TYPE) => pred.bound.as_path(), _ => None, }) .filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path) { Some(TypeNs::TraitId(t)) => Some(t), _ => None, }) .collect() } /// Returns an iterator over the whole super trait hierarchy (including the /// trait itself). pub(super) fn all_super_traits(db: &impl DefDatabase, trait_: TraitId) -> Vec { // we need to take care a bit here to avoid infinite loops in case of cycles // (i.e. if we have `trait A: B; trait B: A;`) let mut result = vec![trait_]; let mut i = 0; while i < result.len() { let t = result[i]; // yeah this is quadratic, but trait hierarchies should be flat // enough that this doesn't matter for tt in direct_super_traits(db, t) { if !result.contains(&tt) { result.push(tt); } } i += 1; } result } pub(super) fn associated_type_by_name_including_super_traits( db: &impl DefDatabase, trait_: TraitId, name: &Name, ) -> Option { all_super_traits(db, trait_) .into_iter() .find_map(|t| db.trait_data(t).associated_type_by_name(name)) }