//! Transforms `ast::Expr` into an equivalent `hir_def::expr::Expr` //! representation. use either::Either; use hir_expand::{ hygiene::Hygiene, name::{name, AsName, Name}, HirFileId, MacroDefId, MacroDefKind, }; use ra_arena::Arena; use ra_syntax::{ ast::{ self, ArgListOwner, ArrayExprKind, LiteralKind, LoopBodyOwner, ModuleItemOwner, NameOwner, SlicePatComponents, TypeAscriptionOwner, }, AstNode, AstPtr, }; use test_utils::mark; use crate::{ adt::StructKind, body::{Body, BodySourceMap, Expander, PatPtr, SyntheticSyntax}, builtin_type::{BuiltinFloat, BuiltinInt}, db::DefDatabase, expr::{ dummy_expr_id, ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal, LogicOp, MatchArm, Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement, }, item_scope::BuiltinShadowMode, item_tree::{ItemTree, ItemTreeId, ItemTreeNode}, path::{GenericArgs, Path}, type_ref::{Mutability, Rawness, TypeRef}, AdtId, ConstLoc, ContainerId, DefWithBodyId, EnumLoc, FunctionLoc, Intern, ModuleDefId, StaticLoc, StructLoc, TraitLoc, TypeAliasLoc, UnionLoc, }; use super::{ExprSource, PatSource}; use ast::AstChildren; use rustc_hash::FxHashMap; use std::{any::type_name, sync::Arc}; pub(crate) struct LowerCtx { hygiene: Hygiene, } impl LowerCtx { pub fn new(db: &dyn DefDatabase, file_id: HirFileId) -> Self { LowerCtx { hygiene: Hygiene::new(db.upcast(), file_id) } } pub fn with_hygiene(hygiene: &Hygiene) -> Self { LowerCtx { hygiene: hygiene.clone() } } pub fn lower_path(&self, ast: ast::Path) -> Option<Path> { Path::from_src(ast, &self.hygiene) } } pub(super) fn lower( db: &dyn DefDatabase, def: DefWithBodyId, expander: Expander, params: Option<ast::ParamList>, body: Option<ast::Expr>, ) -> (Body, BodySourceMap) { let item_tree = db.item_tree(expander.current_file_id); ExprCollector { db, def, source_map: BodySourceMap::default(), body: Body { exprs: Arena::default(), pats: Arena::default(), params: Vec::new(), body_expr: dummy_expr_id(), item_scope: Default::default(), }, item_trees: { let mut map = FxHashMap::default(); map.insert(expander.current_file_id, item_tree); map }, expander, } .collect(params, body) } struct ExprCollector<'a> { db: &'a dyn DefDatabase, def: DefWithBodyId, expander: Expander, body: Body, source_map: BodySourceMap, item_trees: FxHashMap<HirFileId, Arc<ItemTree>>, } impl ExprCollector<'_> { fn collect( mut self, param_list: Option<ast::ParamList>, body: Option<ast::Expr>, ) -> (Body, BodySourceMap) { if let Some(param_list) = param_list { if let Some(self_param) = param_list.self_param() { let ptr = AstPtr::new(&self_param); let param_pat = self.alloc_pat( Pat::Bind { name: name![self], mode: BindingAnnotation::Unannotated, subpat: None, }, Either::Right(ptr), ); self.body.params.push(param_pat); } for param in param_list.params() { let pat = match param.pat() { None => continue, Some(pat) => pat, }; let param_pat = self.collect_pat(pat); self.body.params.push(param_pat); } }; self.body.body_expr = self.collect_expr_opt(body); (self.body, self.source_map) } fn ctx(&self) -> LowerCtx { LowerCtx::new(self.db, self.expander.current_file_id) } fn alloc_expr(&mut self, expr: Expr, ptr: AstPtr<ast::Expr>) -> ExprId { let src = self.expander.to_source(ptr); let id = self.make_expr(expr, Ok(src.clone())); self.source_map.expr_map.insert(src, id); id } // desugared exprs don't have ptr, that's wrong and should be fixed // somehow. fn alloc_expr_desugared(&mut self, expr: Expr) -> ExprId { self.make_expr(expr, Err(SyntheticSyntax)) } fn empty_block(&mut self) -> ExprId { self.alloc_expr_desugared(Expr::Block { statements: Vec::new(), tail: None, label: None }) } fn missing_expr(&mut self) -> ExprId { self.alloc_expr_desugared(Expr::Missing) } fn make_expr(&mut self, expr: Expr, src: Result<ExprSource, SyntheticSyntax>) -> ExprId { let id = self.body.exprs.alloc(expr); self.source_map.expr_map_back.insert(id, src); id } fn alloc_pat(&mut self, pat: Pat, ptr: PatPtr) -> PatId { let src = self.expander.to_source(ptr); let id = self.make_pat(pat, Ok(src.clone())); self.source_map.pat_map.insert(src, id); id } fn missing_pat(&mut self) -> PatId { self.make_pat(Pat::Missing, Err(SyntheticSyntax)) } fn make_pat(&mut self, pat: Pat, src: Result<PatSource, SyntheticSyntax>) -> PatId { let id = self.body.pats.alloc(pat); self.source_map.pat_map_back.insert(id, src); id } fn collect_expr(&mut self, expr: ast::Expr) -> ExprId { let syntax_ptr = AstPtr::new(&expr); if !self.expander.is_cfg_enabled(&expr) { return self.missing_expr(); } match expr { ast::Expr::IfExpr(e) => { let then_branch = self.collect_block_opt(e.then_branch()); let else_branch = e.else_branch().map(|b| match b { ast::ElseBranch::Block(it) => self.collect_block(it), ast::ElseBranch::IfExpr(elif) => { let expr: ast::Expr = ast::Expr::cast(elif.syntax().clone()).unwrap(); self.collect_expr(expr) } }); let condition = match e.condition() { None => self.missing_expr(), Some(condition) => match condition.pat() { None => self.collect_expr_opt(condition.expr()), // if let -- desugar to match Some(pat) => { let pat = self.collect_pat(pat); let match_expr = self.collect_expr_opt(condition.expr()); let placeholder_pat = self.missing_pat(); let arms = vec![ MatchArm { pat, expr: then_branch, guard: None }, MatchArm { pat: placeholder_pat, expr: else_branch.unwrap_or_else(|| self.empty_block()), guard: None, }, ]; return self .alloc_expr(Expr::Match { expr: match_expr, arms }, syntax_ptr); } }, }; self.alloc_expr(Expr::If { condition, then_branch, else_branch }, syntax_ptr) } ast::Expr::EffectExpr(e) => match e.effect() { ast::Effect::Try(_) => { let body = self.collect_block_opt(e.block_expr()); self.alloc_expr(Expr::TryBlock { body }, syntax_ptr) } ast::Effect::Unsafe(_) => { let body = self.collect_block_opt(e.block_expr()); self.alloc_expr(Expr::Unsafe { body }, syntax_ptr) } // FIXME: we need to record these effects somewhere... ast::Effect::Async(_) | ast::Effect::Label(_) => { self.collect_block_opt(e.block_expr()) } }, ast::Expr::BlockExpr(e) => self.collect_block(e), ast::Expr::LoopExpr(e) => { let body = self.collect_block_opt(e.loop_body()); self.alloc_expr( Expr::Loop { body, label: e .label() .and_then(|l| l.lifetime_token()) .map(|l| Name::new_lifetime(&l)), }, syntax_ptr, ) } ast::Expr::WhileExpr(e) => { let body = self.collect_block_opt(e.loop_body()); let condition = match e.condition() { None => self.missing_expr(), Some(condition) => match condition.pat() { None => self.collect_expr_opt(condition.expr()), // if let -- desugar to match Some(pat) => { mark::hit!(infer_resolve_while_let); let pat = self.collect_pat(pat); let match_expr = self.collect_expr_opt(condition.expr()); let placeholder_pat = self.missing_pat(); let break_ = self.alloc_expr_desugared(Expr::Break { expr: None, label: None }); let arms = vec![ MatchArm { pat, expr: body, guard: None }, MatchArm { pat: placeholder_pat, expr: break_, guard: None }, ]; let match_expr = self.alloc_expr_desugared(Expr::Match { expr: match_expr, arms }); return self.alloc_expr( Expr::Loop { body: match_expr, label: e .label() .and_then(|l| l.lifetime_token()) .map(|l| Name::new_lifetime(&l)), }, syntax_ptr, ); } }, }; self.alloc_expr( Expr::While { condition, body, label: e .label() .and_then(|l| l.lifetime_token()) .map(|l| Name::new_lifetime(&l)), }, syntax_ptr, ) } ast::Expr::ForExpr(e) => { let iterable = self.collect_expr_opt(e.iterable()); let pat = self.collect_pat_opt(e.pat()); let body = self.collect_block_opt(e.loop_body()); self.alloc_expr( Expr::For { iterable, pat, body, label: e .label() .and_then(|l| l.lifetime_token()) .map(|l| Name::new_lifetime(&l)), }, syntax_ptr, ) } ast::Expr::CallExpr(e) => { let callee = self.collect_expr_opt(e.expr()); let args = if let Some(arg_list) = e.arg_list() { arg_list.args().map(|e| self.collect_expr(e)).collect() } else { Vec::new() }; self.alloc_expr(Expr::Call { callee, args }, syntax_ptr) } ast::Expr::MethodCallExpr(e) => { let receiver = self.collect_expr_opt(e.expr()); let args = if let Some(arg_list) = e.arg_list() { arg_list.args().map(|e| self.collect_expr(e)).collect() } else { Vec::new() }; let method_name = e.name_ref().map(|nr| nr.as_name()).unwrap_or_else(Name::missing); let generic_args = e.type_arg_list().and_then(|it| GenericArgs::from_ast(&self.ctx(), it)); self.alloc_expr( Expr::MethodCall { receiver, method_name, args, generic_args }, syntax_ptr, ) } ast::Expr::MatchExpr(e) => { let expr = self.collect_expr_opt(e.expr()); let arms = if let Some(match_arm_list) = e.match_arm_list() { match_arm_list .arms() .map(|arm| MatchArm { pat: self.collect_pat_opt(arm.pat()), expr: self.collect_expr_opt(arm.expr()), guard: arm .guard() .and_then(|guard| guard.expr()) .map(|e| self.collect_expr(e)), }) .collect() } else { Vec::new() }; self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr) } ast::Expr::PathExpr(e) => { let path = e .path() .and_then(|path| self.expander.parse_path(path)) .map(Expr::Path) .unwrap_or(Expr::Missing); self.alloc_expr(path, syntax_ptr) } ast::Expr::ContinueExpr(e) => self.alloc_expr( Expr::Continue { label: e.lifetime_token().map(|l| Name::new_lifetime(&l)) }, syntax_ptr, ), ast::Expr::BreakExpr(e) => { let expr = e.expr().map(|e| self.collect_expr(e)); self.alloc_expr( Expr::Break { expr, label: e.lifetime_token().map(|l| Name::new_lifetime(&l)) }, syntax_ptr, ) } ast::Expr::ParenExpr(e) => { let inner = self.collect_expr_opt(e.expr()); // make the paren expr point to the inner expression as well let src = self.expander.to_source(syntax_ptr); self.source_map.expr_map.insert(src, inner); inner } ast::Expr::ReturnExpr(e) => { let expr = e.expr().map(|e| self.collect_expr(e)); self.alloc_expr(Expr::Return { expr }, syntax_ptr) } ast::Expr::RecordLit(e) => { let path = e.path().and_then(|path| self.expander.parse_path(path)); let mut field_ptrs = Vec::new(); let record_lit = if let Some(nfl) = e.record_field_list() { let fields = nfl .fields() .inspect(|field| field_ptrs.push(AstPtr::new(field))) .filter_map(|field| { if !self.expander.is_cfg_enabled(&field) { return None; } let name = field.field_name()?.as_name(); Some(RecordLitField { name, expr: match field.expr() { Some(e) => self.collect_expr(e), None => self.missing_expr(), }, }) }) .collect(); let spread = nfl.spread().map(|s| self.collect_expr(s)); Expr::RecordLit { path, fields, spread } } else { Expr::RecordLit { path, fields: Vec::new(), spread: None } }; let res = self.alloc_expr(record_lit, syntax_ptr); for (i, ptr) in field_ptrs.into_iter().enumerate() { let src = self.expander.to_source(ptr); self.source_map.field_map.insert((res, i), src); } res } ast::Expr::FieldExpr(e) => { let expr = self.collect_expr_opt(e.expr()); let name = match e.field_access() { Some(kind) => kind.as_name(), _ => Name::missing(), }; self.alloc_expr(Expr::Field { expr, name }, syntax_ptr) } ast::Expr::AwaitExpr(e) => { let expr = self.collect_expr_opt(e.expr()); self.alloc_expr(Expr::Await { expr }, syntax_ptr) } ast::Expr::TryExpr(e) => { let expr = self.collect_expr_opt(e.expr()); self.alloc_expr(Expr::Try { expr }, syntax_ptr) } ast::Expr::CastExpr(e) => { let expr = self.collect_expr_opt(e.expr()); let type_ref = TypeRef::from_ast_opt(&self.ctx(), e.type_ref()); self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr) } ast::Expr::RefExpr(e) => { let expr = self.collect_expr_opt(e.expr()); let raw_tok = e.raw_token().is_some(); let mutability = if raw_tok { if e.mut_token().is_some() { Mutability::Mut } else if e.const_token().is_some() { Mutability::Shared } else { unreachable!("parser only remaps to raw_token() if matching mutability token follows") } } else { Mutability::from_mutable(e.mut_token().is_some()) }; let rawness = Rawness::from_raw(raw_tok); self.alloc_expr(Expr::Ref { expr, rawness, mutability }, syntax_ptr) } ast::Expr::PrefixExpr(e) => { let expr = self.collect_expr_opt(e.expr()); if let Some(op) = e.op_kind() { self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr) } else { self.alloc_expr(Expr::Missing, syntax_ptr) } } ast::Expr::LambdaExpr(e) => { let mut args = Vec::new(); let mut arg_types = Vec::new(); if let Some(pl) = e.param_list() { for param in pl.params() { let pat = self.collect_pat_opt(param.pat()); let type_ref = param.ascribed_type().map(|it| TypeRef::from_ast(&self.ctx(), it)); args.push(pat); arg_types.push(type_ref); } } let ret_type = e .ret_type() .and_then(|r| r.type_ref()) .map(|it| TypeRef::from_ast(&self.ctx(), it)); let body = self.collect_expr_opt(e.body()); self.alloc_expr(Expr::Lambda { args, arg_types, ret_type, body }, syntax_ptr) } ast::Expr::BinExpr(e) => { let lhs = self.collect_expr_opt(e.lhs()); let rhs = self.collect_expr_opt(e.rhs()); let op = e.op_kind().map(BinaryOp::from); self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr) } ast::Expr::TupleExpr(e) => { let exprs = e.exprs().map(|expr| self.collect_expr(expr)).collect(); self.alloc_expr(Expr::Tuple { exprs }, syntax_ptr) } ast::Expr::BoxExpr(e) => { let expr = self.collect_expr_opt(e.expr()); self.alloc_expr(Expr::Box { expr }, syntax_ptr) } ast::Expr::ArrayExpr(e) => { let kind = e.kind(); match kind { ArrayExprKind::ElementList(e) => { let exprs = e.map(|expr| self.collect_expr(expr)).collect(); self.alloc_expr(Expr::Array(Array::ElementList(exprs)), syntax_ptr) } ArrayExprKind::Repeat { initializer, repeat } => { let initializer = self.collect_expr_opt(initializer); let repeat = self.collect_expr_opt(repeat); self.alloc_expr( Expr::Array(Array::Repeat { initializer, repeat }), syntax_ptr, ) } } } ast::Expr::Literal(e) => self.alloc_expr(Expr::Literal(e.kind().into()), syntax_ptr), ast::Expr::IndexExpr(e) => { let base = self.collect_expr_opt(e.base()); let index = self.collect_expr_opt(e.index()); self.alloc_expr(Expr::Index { base, index }, syntax_ptr) } ast::Expr::RangeExpr(e) => { let lhs = e.start().map(|lhs| self.collect_expr(lhs)); let rhs = e.end().map(|rhs| self.collect_expr(rhs)); match e.op_kind() { Some(range_type) => { self.alloc_expr(Expr::Range { lhs, rhs, range_type }, syntax_ptr) } None => self.alloc_expr(Expr::Missing, syntax_ptr), } } ast::Expr::MacroCall(e) => { if let Some(name) = e.is_macro_rules().map(|it| it.as_name()) { let mac = MacroDefId { krate: Some(self.expander.module.krate), ast_id: Some(self.expander.ast_id(&e)), kind: MacroDefKind::Declarative, local_inner: false, }; self.body.item_scope.define_legacy_macro(name, mac); // FIXME: do we still need to allocate this as missing ? self.alloc_expr(Expr::Missing, syntax_ptr) } else { let macro_call = self.expander.to_source(AstPtr::new(&e)); match self.expander.enter_expand(self.db, Some(&self.body.item_scope), e) { Some((mark, expansion)) => { self.source_map .expansions .insert(macro_call, self.expander.current_file_id); let item_tree = self.db.item_tree(self.expander.current_file_id); self.item_trees.insert(self.expander.current_file_id, item_tree); let id = self.collect_expr(expansion); self.expander.exit(self.db, mark); id } None => self.alloc_expr(Expr::Missing, syntax_ptr), } } } // FIXME implement HIR for these: ast::Expr::Label(_e) => self.alloc_expr(Expr::Missing, syntax_ptr), } } fn find_inner_item<N: ItemTreeNode>(&self, ast: &N::Source) -> Option<ItemTreeId<N>> { let id = self.expander.ast_id(ast); let tree = &self.item_trees[&id.file_id]; // FIXME: This probably breaks with `use` items, since they produce multiple item tree nodes // Root file (non-macro). let item_tree_id = tree .all_inner_items() .chain(tree.top_level_items().iter().copied()) .filter_map(|mod_item| mod_item.downcast::<N>()) .find(|tree_id| tree[*tree_id].ast_id().upcast() == id.value.upcast()) .or_else(|| { log::debug!( "couldn't find inner {} item for {:?} (AST: `{}` - {:?})", type_name::<N>(), id, ast.syntax(), ast.syntax(), ); None })?; Some(ItemTreeId::new(id.file_id, item_tree_id)) } fn collect_expr_opt(&mut self, expr: Option<ast::Expr>) -> ExprId { if let Some(expr) = expr { self.collect_expr(expr) } else { self.missing_expr() } } fn collect_block(&mut self, block: ast::BlockExpr) -> ExprId { let syntax_node_ptr = AstPtr::new(&block.clone().into()); self.collect_block_items(&block); let statements = block .statements() .map(|s| match s { ast::Stmt::LetStmt(stmt) => { let pat = self.collect_pat_opt(stmt.pat()); let type_ref = stmt.ascribed_type().map(|it| TypeRef::from_ast(&self.ctx(), it)); let initializer = stmt.initializer().map(|e| self.collect_expr(e)); Statement::Let { pat, type_ref, initializer } } ast::Stmt::ExprStmt(stmt) => Statement::Expr(self.collect_expr_opt(stmt.expr())), }) .collect(); let tail = block.expr().map(|e| self.collect_expr(e)); let label = block.label().and_then(|l| l.lifetime_token()).map(|t| Name::new_lifetime(&t)); self.alloc_expr(Expr::Block { statements, tail, label }, syntax_node_ptr) } fn collect_block_items(&mut self, block: &ast::BlockExpr) { let container = ContainerId::DefWithBodyId(self.def); let items = block .items() .filter_map(|item| { let (def, name): (ModuleDefId, Option<ast::Name>) = match item { ast::ModuleItem::FnDef(def) => { let id = self.find_inner_item(&def)?; ( FunctionLoc { container: container.into(), id }.intern(self.db).into(), def.name(), ) } ast::ModuleItem::TypeAliasDef(def) => { let id = self.find_inner_item(&def)?; ( TypeAliasLoc { container: container.into(), id }.intern(self.db).into(), def.name(), ) } ast::ModuleItem::ConstDef(def) => { let id = self.find_inner_item(&def)?; ( ConstLoc { container: container.into(), id }.intern(self.db).into(), def.name(), ) } ast::ModuleItem::StaticDef(def) => { let id = self.find_inner_item(&def)?; (StaticLoc { container, id }.intern(self.db).into(), def.name()) } ast::ModuleItem::StructDef(def) => { let id = self.find_inner_item(&def)?; (StructLoc { container, id }.intern(self.db).into(), def.name()) } ast::ModuleItem::EnumDef(def) => { let id = self.find_inner_item(&def)?; (EnumLoc { container, id }.intern(self.db).into(), def.name()) } ast::ModuleItem::UnionDef(def) => { let id = self.find_inner_item(&def)?; (UnionLoc { container, id }.intern(self.db).into(), def.name()) } ast::ModuleItem::TraitDef(def) => { let id = self.find_inner_item(&def)?; (TraitLoc { container, id }.intern(self.db).into(), def.name()) } ast::ModuleItem::ExternBlock(_) => return None, // FIXME: collect from extern blocks ast::ModuleItem::ImplDef(_) | ast::ModuleItem::UseItem(_) | ast::ModuleItem::ExternCrateItem(_) | ast::ModuleItem::Module(_) | ast::ModuleItem::MacroCall(_) => return None, }; Some((def, name)) }) .collect::<Vec<_>>(); for (def, name) in items { self.body.item_scope.define_def(def); if let Some(name) = name { let vis = crate::visibility::Visibility::Public; // FIXME determine correctly let has_constructor = match def { ModuleDefId::AdtId(AdtId::StructId(s)) => { self.db.struct_data(s).variant_data.kind() != StructKind::Record } _ => true, }; self.body.item_scope.push_res( name.as_name(), crate::per_ns::PerNs::from_def(def, vis, has_constructor), ); } } } fn collect_block_opt(&mut self, expr: Option<ast::BlockExpr>) -> ExprId { if let Some(block) = expr { self.collect_block(block) } else { self.missing_expr() } } fn collect_pat(&mut self, pat: ast::Pat) -> PatId { let pattern = match &pat { ast::Pat::BindPat(bp) => { let name = bp.name().map(|nr| nr.as_name()).unwrap_or_else(Name::missing); let annotation = BindingAnnotation::new(bp.mut_token().is_some(), bp.ref_token().is_some()); let subpat = bp.pat().map(|subpat| self.collect_pat(subpat)); if annotation == BindingAnnotation::Unannotated && subpat.is_none() { // This could also be a single-segment path pattern. To // decide that, we need to try resolving the name. let (resolved, _) = self.expander.crate_def_map.resolve_path( self.db, self.expander.module.local_id, &name.clone().into(), BuiltinShadowMode::Other, ); match resolved.take_values() { Some(ModuleDefId::ConstId(_)) => Pat::Path(name.into()), Some(ModuleDefId::EnumVariantId(_)) => { // this is only really valid for unit variants, but // shadowing other enum variants with a pattern is // an error anyway Pat::Path(name.into()) } Some(ModuleDefId::AdtId(AdtId::StructId(s))) if self.db.struct_data(s).variant_data.kind() != StructKind::Record => { // Funnily enough, record structs *can* be shadowed // by pattern bindings (but unit or tuple structs // can't). Pat::Path(name.into()) } // shadowing statics is an error as well, so we just ignore that case here _ => Pat::Bind { name, mode: annotation, subpat }, } } else { Pat::Bind { name, mode: annotation, subpat } } } ast::Pat::TupleStructPat(p) => { let path = p.path().and_then(|path| self.expander.parse_path(path)); let (args, ellipsis) = self.collect_tuple_pat(p.args()); Pat::TupleStruct { path, args, ellipsis } } ast::Pat::RefPat(p) => { let pat = self.collect_pat_opt(p.pat()); let mutability = Mutability::from_mutable(p.mut_token().is_some()); Pat::Ref { pat, mutability } } ast::Pat::PathPat(p) => { let path = p.path().and_then(|path| self.expander.parse_path(path)); path.map(Pat::Path).unwrap_or(Pat::Missing) } ast::Pat::OrPat(p) => { let pats = p.pats().map(|p| self.collect_pat(p)).collect(); Pat::Or(pats) } ast::Pat::ParenPat(p) => return self.collect_pat_opt(p.pat()), ast::Pat::TuplePat(p) => { let (args, ellipsis) = self.collect_tuple_pat(p.args()); Pat::Tuple { args, ellipsis } } ast::Pat::PlaceholderPat(_) => Pat::Wild, ast::Pat::RecordPat(p) => { let path = p.path().and_then(|path| self.expander.parse_path(path)); let record_field_pat_list = p.record_field_pat_list().expect("every struct should have a field list"); let mut fields: Vec<_> = record_field_pat_list .bind_pats() .filter_map(|bind_pat| { let ast_pat = ast::Pat::cast(bind_pat.syntax().clone()).expect("bind pat is a pat"); let pat = self.collect_pat(ast_pat); let name = bind_pat.name()?.as_name(); Some(RecordFieldPat { name, pat }) }) .collect(); let iter = record_field_pat_list.record_field_pats().filter_map(|f| { let ast_pat = f.pat()?; let pat = self.collect_pat(ast_pat); let name = f.field_name()?.as_name(); Some(RecordFieldPat { name, pat }) }); fields.extend(iter); let ellipsis = record_field_pat_list.dotdot_token().is_some(); Pat::Record { path, args: fields, ellipsis } } ast::Pat::SlicePat(p) => { let SlicePatComponents { prefix, slice, suffix } = p.components(); // FIXME properly handle `DotDotPat` Pat::Slice { prefix: prefix.into_iter().map(|p| self.collect_pat(p)).collect(), slice: slice.map(|p| self.collect_pat(p)), suffix: suffix.into_iter().map(|p| self.collect_pat(p)).collect(), } } ast::Pat::LiteralPat(lit) => { if let Some(ast_lit) = lit.literal() { let expr = Expr::Literal(ast_lit.kind().into()); let expr_ptr = AstPtr::new(&ast::Expr::Literal(ast_lit)); let expr_id = self.alloc_expr(expr, expr_ptr); Pat::Lit(expr_id) } else { Pat::Missing } } ast::Pat::DotDotPat(_) => { // `DotDotPat` requires special handling and should not be mapped // to a Pat. Here we are using `Pat::Missing` as a fallback for // when `DotDotPat` is mapped to `Pat`, which can easily happen // when the source code being analyzed has a malformed pattern // which includes `..` in a place where it isn't valid. Pat::Missing } // FIXME: implement ast::Pat::BoxPat(_) | ast::Pat::RangePat(_) | ast::Pat::MacroPat(_) => Pat::Missing, }; let ptr = AstPtr::new(&pat); self.alloc_pat(pattern, Either::Left(ptr)) } fn collect_pat_opt(&mut self, pat: Option<ast::Pat>) -> PatId { if let Some(pat) = pat { self.collect_pat(pat) } else { self.missing_pat() } } fn collect_tuple_pat(&mut self, args: AstChildren<ast::Pat>) -> (Vec<PatId>, Option<usize>) { // Find the location of the `..`, if there is one. Note that we do not // consider the possiblity of there being multiple `..` here. let ellipsis = args.clone().position(|p| matches!(p, ast::Pat::DotDotPat(_))); // We want to skip the `..` pattern here, since we account for it above. let args = args .filter(|p| !matches!(p, ast::Pat::DotDotPat(_))) .map(|p| self.collect_pat(p)) .collect(); (args, ellipsis) } } impl From<ast::BinOp> for BinaryOp { fn from(ast_op: ast::BinOp) -> Self { match ast_op { ast::BinOp::BooleanOr => BinaryOp::LogicOp(LogicOp::Or), ast::BinOp::BooleanAnd => BinaryOp::LogicOp(LogicOp::And), ast::BinOp::EqualityTest => BinaryOp::CmpOp(CmpOp::Eq { negated: false }), ast::BinOp::NegatedEqualityTest => BinaryOp::CmpOp(CmpOp::Eq { negated: true }), ast::BinOp::LesserEqualTest => { BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: false }) } ast::BinOp::GreaterEqualTest => { BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: false }) } ast::BinOp::LesserTest => { BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: true }) } ast::BinOp::GreaterTest => { BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: true }) } ast::BinOp::Addition => BinaryOp::ArithOp(ArithOp::Add), ast::BinOp::Multiplication => BinaryOp::ArithOp(ArithOp::Mul), ast::BinOp::Subtraction => BinaryOp::ArithOp(ArithOp::Sub), ast::BinOp::Division => BinaryOp::ArithOp(ArithOp::Div), ast::BinOp::Remainder => BinaryOp::ArithOp(ArithOp::Rem), ast::BinOp::LeftShift => BinaryOp::ArithOp(ArithOp::Shl), ast::BinOp::RightShift => BinaryOp::ArithOp(ArithOp::Shr), ast::BinOp::BitwiseXor => BinaryOp::ArithOp(ArithOp::BitXor), ast::BinOp::BitwiseOr => BinaryOp::ArithOp(ArithOp::BitOr), ast::BinOp::BitwiseAnd => BinaryOp::ArithOp(ArithOp::BitAnd), ast::BinOp::Assignment => BinaryOp::Assignment { op: None }, ast::BinOp::AddAssign => BinaryOp::Assignment { op: Some(ArithOp::Add) }, ast::BinOp::DivAssign => BinaryOp::Assignment { op: Some(ArithOp::Div) }, ast::BinOp::MulAssign => BinaryOp::Assignment { op: Some(ArithOp::Mul) }, ast::BinOp::RemAssign => BinaryOp::Assignment { op: Some(ArithOp::Rem) }, ast::BinOp::ShlAssign => BinaryOp::Assignment { op: Some(ArithOp::Shl) }, ast::BinOp::ShrAssign => BinaryOp::Assignment { op: Some(ArithOp::Shr) }, ast::BinOp::SubAssign => BinaryOp::Assignment { op: Some(ArithOp::Sub) }, ast::BinOp::BitOrAssign => BinaryOp::Assignment { op: Some(ArithOp::BitOr) }, ast::BinOp::BitAndAssign => BinaryOp::Assignment { op: Some(ArithOp::BitAnd) }, ast::BinOp::BitXorAssign => BinaryOp::Assignment { op: Some(ArithOp::BitXor) }, } } } impl From<ast::LiteralKind> for Literal { fn from(ast_lit_kind: ast::LiteralKind) -> Self { match ast_lit_kind { LiteralKind::IntNumber { suffix } => { let known_name = suffix.and_then(|it| BuiltinInt::from_suffix(&it)); Literal::Int(Default::default(), known_name) } LiteralKind::FloatNumber { suffix } => { let known_name = suffix.and_then(|it| BuiltinFloat::from_suffix(&it)); Literal::Float(Default::default(), known_name) } LiteralKind::ByteString => Literal::ByteString(Default::default()), LiteralKind::String => Literal::String(Default::default()), LiteralKind::Byte => Literal::Int(Default::default(), Some(BuiltinInt::U8)), LiteralKind::Bool(val) => Literal::Bool(val), LiteralKind::Char => Literal::Char(Default::default()), } } }