//! Contains basic data about various HIR declarations. use std::sync::Arc; use hir_expand::{ name::{name, AsName, Name}, AstId, InFile, }; use ra_syntax::ast::{self, AstNode, ImplItem, ModuleItemOwner, NameOwner, TypeAscriptionOwner}; use crate::{ db::DefDatabase, path::{path, GenericArgs, Path}, src::HasSource, type_ref::{Mutability, TypeBound, TypeRef}, AssocContainerId, AssocItemId, ConstId, ConstLoc, Expander, FunctionId, FunctionLoc, HasModule, ImplId, Intern, Lookup, ModuleId, StaticId, TraitId, TypeAliasId, TypeAliasLoc, }; #[derive(Debug, Clone, PartialEq, Eq)] pub struct FunctionData { pub name: Name, pub params: Vec, pub ret_type: TypeRef, /// True if the first param is `self`. This is relevant to decide whether this /// can be called as a method. pub has_self_param: bool, } impl FunctionData { pub(crate) fn fn_data_query(db: &impl DefDatabase, func: FunctionId) -> Arc { let src = func.lookup(db).source(db); let name = src.value.name().map(|n| n.as_name()).unwrap_or_else(Name::missing); let mut params = Vec::new(); let mut has_self_param = false; if let Some(param_list) = src.value.param_list() { if let Some(self_param) = param_list.self_param() { let self_type = if let Some(type_ref) = self_param.ascribed_type() { TypeRef::from_ast(type_ref) } else { let self_type = TypeRef::Path(name![Self].into()); match self_param.kind() { ast::SelfParamKind::Owned => self_type, ast::SelfParamKind::Ref => { TypeRef::Reference(Box::new(self_type), Mutability::Shared) } ast::SelfParamKind::MutRef => { TypeRef::Reference(Box::new(self_type), Mutability::Mut) } } }; params.push(self_type); has_self_param = true; } for param in param_list.params() { let type_ref = TypeRef::from_ast_opt(param.ascribed_type()); params.push(type_ref); } } let ret_type = if let Some(type_ref) = src.value.ret_type().and_then(|rt| rt.type_ref()) { TypeRef::from_ast(type_ref) } else { TypeRef::unit() }; let ret_type = if src.value.is_async() { let future_impl = desugar_future_path(ret_type); let ty_bound = TypeBound::Path(future_impl); TypeRef::ImplTrait(vec![ty_bound]) } else { ret_type }; let sig = FunctionData { name, params, ret_type, has_self_param }; Arc::new(sig) } } fn desugar_future_path(orig: TypeRef) -> Path { let path = path![std::future::Future]; let mut generic_args: Vec<_> = std::iter::repeat(None).take(path.segments.len() - 1).collect(); let mut last = GenericArgs::empty(); last.bindings.push((name![Output], orig)); generic_args.push(Some(Arc::new(last))); Path::from_known_path(path, generic_args) } #[derive(Debug, Clone, PartialEq, Eq)] pub struct TypeAliasData { pub name: Name, pub type_ref: Option, } impl TypeAliasData { pub(crate) fn type_alias_data_query( db: &impl DefDatabase, typ: TypeAliasId, ) -> Arc { let node = typ.lookup(db).source(db).value; let name = node.name().map_or_else(Name::missing, |n| n.as_name()); let type_ref = node.type_ref().map(TypeRef::from_ast); Arc::new(TypeAliasData { name, type_ref }) } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct TraitData { pub name: Name, pub items: Vec<(Name, AssocItemId)>, pub auto: bool, } impl TraitData { pub(crate) fn trait_data_query(db: &impl DefDatabase, tr: TraitId) -> Arc { let src = tr.lookup(db).source(db); let name = src.value.name().map_or_else(Name::missing, |n| n.as_name()); let auto = src.value.is_auto(); let ast_id_map = db.ast_id_map(src.file_id); let container = AssocContainerId::TraitId(tr); let items = if let Some(item_list) = src.value.item_list() { item_list .impl_items() .map(|item_node| match item_node { ast::ImplItem::FnDef(it) => { let name = it.name().map_or_else(Name::missing, |it| it.as_name()); let def = FunctionLoc { container, ast_id: AstId::new(src.file_id, ast_id_map.ast_id(&it)), } .intern(db) .into(); (name, def) } ast::ImplItem::ConstDef(it) => { let name = it.name().map_or_else(Name::missing, |it| it.as_name()); let def = ConstLoc { container, ast_id: AstId::new(src.file_id, ast_id_map.ast_id(&it)), } .intern(db) .into(); (name, def) } ast::ImplItem::TypeAliasDef(it) => { let name = it.name().map_or_else(Name::missing, |it| it.as_name()); let def = TypeAliasLoc { container, ast_id: AstId::new(src.file_id, ast_id_map.ast_id(&it)), } .intern(db) .into(); (name, def) } }) .collect() } else { Vec::new() }; Arc::new(TraitData { name, items, auto }) } pub fn associated_types(&self) -> impl Iterator + '_ { self.items.iter().filter_map(|(_name, item)| match item { AssocItemId::TypeAliasId(t) => Some(*t), _ => None, }) } pub fn associated_type_by_name(&self, name: &Name) -> Option { self.items.iter().find_map(|(item_name, item)| match item { AssocItemId::TypeAliasId(t) if item_name == name => Some(*t), _ => None, }) } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct ImplData { pub target_trait: Option, pub target_type: TypeRef, pub items: Vec, pub is_negative: bool, } impl ImplData { pub(crate) fn impl_data_query(db: &impl DefDatabase, id: ImplId) -> Arc { let impl_loc = id.lookup(db); let src = impl_loc.source(db); let target_trait = src.value.target_trait().map(TypeRef::from_ast); let target_type = TypeRef::from_ast_opt(src.value.target_type()); let is_negative = src.value.is_negative(); let module_id = impl_loc.container.module(db); let mut items = Vec::new(); if let Some(item_list) = src.value.item_list() { items.extend(collect_impl_items(db, item_list.impl_items(), src.file_id, id)); items.extend(collect_impl_items_in_macros( db, module_id, &src.with_value(item_list), id, )); } let res = ImplData { target_trait, target_type, items, is_negative }; Arc::new(res) } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct ConstData { /// const _: () = (); pub name: Option, pub type_ref: TypeRef, } impl ConstData { pub(crate) fn const_data_query(db: &impl DefDatabase, konst: ConstId) -> Arc { let node = konst.lookup(db).source(db).value; Arc::new(ConstData::new(&node)) } pub(crate) fn static_data_query(db: &impl DefDatabase, konst: StaticId) -> Arc { let node = konst.lookup(db).source(db).value; Arc::new(ConstData::new(&node)) } fn new(node: &N) -> ConstData { let name = node.name().map(|n| n.as_name()); let type_ref = TypeRef::from_ast_opt(node.ascribed_type()); ConstData { name, type_ref } } } fn collect_impl_items_in_macros( db: &impl DefDatabase, module_id: ModuleId, impl_def: &InFile, id: ImplId, ) -> Vec { let mut expander = Expander::new(db, impl_def.file_id, module_id); let mut res = Vec::new(); // We set a limit to protect against infinite recursion let limit = 100; for m in impl_def.value.syntax().children().filter_map(ast::MacroCall::cast) { res.extend(collect_impl_items_in_macro(db, &mut expander, m, id, limit)) } res } fn collect_impl_items_in_macro( db: &impl DefDatabase, expander: &mut Expander, m: ast::MacroCall, id: ImplId, limit: usize, ) -> Vec { if limit == 0 { return Vec::new(); } if let Some((mark, items)) = expander.enter_expand(db, m) { let items: InFile = expander.to_source(items); let mut res = collect_impl_items( db, items.value.items().filter_map(|it| ImplItem::cast(it.syntax().clone())), items.file_id, id, ); // Recursive collect macros // Note that ast::ModuleItem do not include ast::MacroCall // We cannot use ModuleItemOwner::items here for it in items.value.syntax().children().filter_map(ast::MacroCall::cast) { res.extend(collect_impl_items_in_macro(db, expander, it, id, limit - 1)) } expander.exit(db, mark); res } else { Vec::new() } } fn collect_impl_items( db: &impl DefDatabase, impl_items: impl Iterator, file_id: crate::HirFileId, id: ImplId, ) -> Vec { let items = db.ast_id_map(file_id); impl_items .map(|item_node| match item_node { ast::ImplItem::FnDef(it) => { let def = FunctionLoc { container: AssocContainerId::ImplId(id), ast_id: AstId::new(file_id, items.ast_id(&it)), } .intern(db); def.into() } ast::ImplItem::ConstDef(it) => { let def = ConstLoc { container: AssocContainerId::ImplId(id), ast_id: AstId::new(file_id, items.ast_id(&it)), } .intern(db); def.into() } ast::ImplItem::TypeAliasDef(it) => { let def = TypeAliasLoc { container: AssocContainerId::ImplId(id), ast_id: AstId::new(file_id, items.ast_id(&it)), } .intern(db); def.into() } }) .collect() }