//! An algorithm to find a path to refer to a certain item. use crate::{ db::DefDatabase, item_scope::ItemInNs, path::{ModPath, PathKind}, visibility::Visibility, CrateId, ModuleDefId, ModuleId, }; use hir_expand::name::{known, Name}; use test_utils::tested_by; const MAX_PATH_LEN: usize = 15; impl ModPath { fn starts_with_std(&self) -> bool { self.segments.first().filter(|&first_segment| first_segment == &known::std).is_some() } // When std library is present, paths starting with `std::` // should be preferred over paths starting with `core::` and `alloc::` fn should_start_with_std(&self) -> bool { self.segments .first() .filter(|&first_segment| { first_segment == &known::alloc || first_segment == &known::core }) .is_some() } fn len(&self) -> usize { self.segments.len() + match self.kind { PathKind::Plain => 0, PathKind::Super(i) => i as usize, PathKind::Crate => 1, PathKind::Abs => 0, PathKind::DollarCrate(_) => 1, } } } // FIXME: handle local items /// Find a path that can be used to refer to a certain item. This can depend on /// *from where* you're referring to the item, hence the `from` parameter. pub fn find_path(db: &impl DefDatabase, item: ItemInNs, from: ModuleId) -> Option { find_path_inner(db, item, from, MAX_PATH_LEN) } fn find_path_inner( db: &impl DefDatabase, item: ItemInNs, from: ModuleId, max_len: usize, ) -> Option { if max_len == 0 { return None; } // Base cases: // - if the item is already in scope, return the name under which it is let def_map = db.crate_def_map(from.krate); let from_scope: &crate::item_scope::ItemScope = &def_map.modules[from.local_id].scope; if let Some((name, _)) = from_scope.name_of(item) { return Some(ModPath::from_segments(PathKind::Plain, vec![name.clone()])); } // - if the item is the crate root, return `crate` if item == ItemInNs::Types(ModuleDefId::ModuleId(ModuleId { krate: from.krate, local_id: def_map.root, })) { return Some(ModPath::from_segments(PathKind::Crate, Vec::new())); } // - if the item is the module we're in, use `self` if item == ItemInNs::Types(from.into()) { return Some(ModPath::from_segments(PathKind::Super(0), Vec::new())); } // - if the item is the parent module, use `super` (this is not used recursively, since `super::super` is ugly) if let Some(parent_id) = def_map.modules[from.local_id].parent { if item == ItemInNs::Types(ModuleDefId::ModuleId(ModuleId { krate: from.krate, local_id: parent_id, })) { return Some(ModPath::from_segments(PathKind::Super(1), Vec::new())); } } // - if the item is the crate root of a dependency crate, return the name from the extern prelude for (name, def_id) in &def_map.extern_prelude { if item == ItemInNs::Types(*def_id) { return Some(ModPath::from_segments(PathKind::Plain, vec![name.clone()])); } } // - if the item is in the prelude, return the name from there if let Some(prelude_module) = def_map.prelude { let prelude_def_map = db.crate_def_map(prelude_module.krate); let prelude_scope: &crate::item_scope::ItemScope = &prelude_def_map.modules[prelude_module.local_id].scope; if let Some((name, vis)) = prelude_scope.name_of(item) { if vis.is_visible_from(db, from) { return Some(ModPath::from_segments(PathKind::Plain, vec![name.clone()])); } } } // Recursive case: // - if the item is an enum variant, refer to it via the enum if let Some(ModuleDefId::EnumVariantId(variant)) = item.as_module_def_id() { if let Some(mut path) = find_path(db, ItemInNs::Types(variant.parent.into()), from) { let data = db.enum_data(variant.parent); path.segments.push(data.variants[variant.local_id].name.clone()); return Some(path); } // If this doesn't work, it seems we have no way of referring to the // enum; that's very weird, but there might still be a reexport of the // variant somewhere } // - otherwise, look for modules containing (reexporting) it and import it from one of those let importable_locations = find_importable_locations(db, item, from); let mut best_path = None; let mut best_path_len = max_len; for (module_id, name) in importable_locations { let mut path = match find_path_inner( db, ItemInNs::Types(ModuleDefId::ModuleId(module_id)), from, best_path_len - 1, ) { None => continue, Some(path) => path, }; path.segments.push(name); let new_path = if let Some(best_path) = best_path { select_best_path(best_path, path) } else { path }; best_path_len = new_path.len(); best_path = Some(new_path); } best_path } fn select_best_path(old_path: ModPath, new_path: ModPath) -> ModPath { if old_path.starts_with_std() && new_path.should_start_with_std() { tested_by!(prefer_std_paths); old_path } else if new_path.starts_with_std() && old_path.should_start_with_std() { tested_by!(prefer_std_paths); new_path } else if new_path.len() < old_path.len() { new_path } else { old_path } } fn find_importable_locations( db: &impl DefDatabase, item: ItemInNs, from: ModuleId, ) -> Vec<(ModuleId, Name)> { let crate_graph = db.crate_graph(); let mut result = Vec::new(); // We only look in the crate from which we are importing, and the direct // dependencies. We cannot refer to names from transitive dependencies // directly (only through reexports in direct dependencies). for krate in Some(from.krate) .into_iter() .chain(crate_graph.crate_data(&from.krate).dependencies.iter().map(|dep| dep.crate_id)) { result.extend( importable_locations_in_crate(db, item, krate) .iter() .filter(|(_, _, vis)| vis.is_visible_from(db, from)) .map(|(m, n, _)| (*m, n.clone())), ); } result } /// Collects all locations from which we might import the item in a particular /// crate. These include the original definition of the item, and any /// non-private `use`s. /// /// Note that the crate doesn't need to be the one in which the item is defined; /// it might be re-exported in other crates. fn importable_locations_in_crate( db: &impl DefDatabase, item: ItemInNs, krate: CrateId, ) -> Vec<(ModuleId, Name, Visibility)> { let def_map = db.crate_def_map(krate); let mut result = Vec::new(); for (local_id, data) in def_map.modules.iter() { if let Some((name, vis)) = data.scope.name_of(item) { let is_private = if let Visibility::Module(private_to) = vis { private_to.local_id == local_id } else { false }; let is_original_def = if let Some(module_def_id) = item.as_module_def_id() { data.scope.declarations().any(|it| it == module_def_id) } else { false }; if is_private && !is_original_def { // Ignore private imports. these could be used if we are // in a submodule of this module, but that's usually not // what the user wants; and if this module can import // the item and we're a submodule of it, so can we. // Also this keeps the cached data smaller. continue; } result.push((ModuleId { krate, local_id }, name.clone(), vis)); } } result } #[cfg(test)] mod tests { use super::*; use crate::test_db::TestDB; use hir_expand::hygiene::Hygiene; use ra_db::fixture::WithFixture; use ra_syntax::ast::AstNode; use test_utils::covers; /// `code` needs to contain a cursor marker; checks that `find_path` for the /// item the `path` refers to returns that same path when called from the /// module the cursor is in. fn check_found_path(code: &str, path: &str) { let (db, pos) = TestDB::with_position(code); let module = db.module_for_file(pos.file_id); let parsed_path_file = ra_syntax::SourceFile::parse(&format!("use {};", path)); let ast_path = parsed_path_file .syntax_node() .descendants() .find_map(ra_syntax::ast::Path::cast) .unwrap(); let mod_path = ModPath::from_src(ast_path, &Hygiene::new_unhygienic()).unwrap(); let crate_def_map = db.crate_def_map(module.krate); let resolved = crate_def_map .resolve_path( &db, module.local_id, &mod_path, crate::item_scope::BuiltinShadowMode::Module, ) .0 .take_types() .unwrap(); let found_path = find_path(&db, ItemInNs::Types(resolved), module); assert_eq!(found_path, Some(mod_path)); } #[test] fn same_module() { let code = r#" //- /main.rs struct S; <|> "#; check_found_path(code, "S"); } #[test] fn enum_variant() { let code = r#" //- /main.rs enum E { A } <|> "#; check_found_path(code, "E::A"); } #[test] fn sub_module() { let code = r#" //- /main.rs mod foo { pub struct S; } <|> "#; check_found_path(code, "foo::S"); } #[test] fn super_module() { let code = r#" //- /main.rs mod foo; //- /foo.rs mod bar; struct S; //- /foo/bar.rs <|> "#; check_found_path(code, "super::S"); } #[test] fn self_module() { let code = r#" //- /main.rs mod foo; //- /foo.rs <|> "#; check_found_path(code, "self"); } #[test] fn crate_root() { let code = r#" //- /main.rs mod foo; //- /foo.rs <|> "#; check_found_path(code, "crate"); } #[test] fn same_crate() { let code = r#" //- /main.rs mod foo; struct S; //- /foo.rs <|> "#; check_found_path(code, "crate::S"); } #[test] fn different_crate() { let code = r#" //- /main.rs crate:main deps:std <|> //- /std.rs crate:std pub struct S; "#; check_found_path(code, "std::S"); } #[test] fn different_crate_renamed() { let code = r#" //- /main.rs crate:main deps:std extern crate std as std_renamed; <|> //- /std.rs crate:std pub struct S; "#; check_found_path(code, "std_renamed::S"); } #[test] fn same_crate_reexport() { let code = r#" //- /main.rs mod bar { mod foo { pub(super) struct S; } pub(crate) use foo::*; } <|> "#; check_found_path(code, "bar::S"); } #[test] fn same_crate_reexport_rename() { let code = r#" //- /main.rs mod bar { mod foo { pub(super) struct S; } pub(crate) use foo::S as U; } <|> "#; check_found_path(code, "bar::U"); } #[test] fn different_crate_reexport() { let code = r#" //- /main.rs crate:main deps:std <|> //- /std.rs crate:std deps:core pub use core::S; //- /core.rs crate:core pub struct S; "#; check_found_path(code, "std::S"); } #[test] fn prelude() { let code = r#" //- /main.rs crate:main deps:std <|> //- /std.rs crate:std pub mod prelude { pub struct S; } #[prelude_import] pub use prelude::*; "#; check_found_path(code, "S"); } #[test] fn enum_variant_from_prelude() { let code = r#" //- /main.rs crate:main deps:std <|> //- /std.rs crate:std pub mod prelude { pub enum Option { Some(T), None } pub use Option::*; } #[prelude_import] pub use prelude::*; "#; check_found_path(code, "None"); check_found_path(code, "Some"); } #[test] fn shortest_path() { let code = r#" //- /main.rs pub mod foo; pub mod baz; struct S; <|> //- /foo.rs pub mod bar { pub struct S; } //- /baz.rs pub use crate::foo::bar::S; "#; check_found_path(code, "baz::S"); } #[test] fn discount_private_imports() { let code = r#" //- /main.rs mod foo; pub mod bar { pub struct S; } use bar::S; //- /foo.rs <|> "#; // crate::S would be shorter, but using private imports seems wrong check_found_path(code, "crate::bar::S"); } #[test] fn import_cycle() { let code = r#" //- /main.rs pub mod foo; pub mod bar; pub mod baz; //- /bar.rs <|> //- /foo.rs pub use super::baz; pub struct S; //- /baz.rs pub use super::foo; "#; check_found_path(code, "crate::foo::S"); } #[test] fn prefer_std_paths_over_alloc() { covers!(prefer_std_paths); let code = r#" //- /main.rs crate:main deps:alloc,std <|> //- /std.rs crate:std deps:alloc pub mod sync { pub use alloc::sync::Arc; } //- /zzz.rs crate:alloc pub mod sync { pub struct Arc; } "#; check_found_path(code, "std::sync::Arc"); } #[test] fn prefer_shorter_paths_if_not_alloc() { let code = r#" //- /main.rs crate:main deps:megaalloc,std <|> //- /std.rs crate:std deps:megaalloc pub mod sync { pub use megaalloc::sync::Arc; } //- /zzz.rs crate:megaalloc pub struct Arc; "#; check_found_path(code, "megaalloc::Arc"); } }