//! This module implements import-resolution/macro expansion algorithm. //! //! The result of this module is `CrateDefMap`: a data structure which contains: //! //! * a tree of modules for the crate //! * for each module, a set of items visible in the module (directly declared //! or imported) //! //! Note that `CrateDefMap` contains fully macro expanded code. //! //! Computing `CrateDefMap` can be partitioned into several logically //! independent "phases". The phases are mutually recursive though, there's no //! strict ordering. //! //! ## Collecting RawItems //! //! This happens in the `raw` module, which parses a single source file into a //! set of top-level items. Nested imports are desugared to flat imports in this //! phase. Macro calls are represented as a triple of (Path, Option, //! TokenTree). //! //! ## Collecting Modules //! //! This happens in the `collector` module. In this phase, we recursively walk //! tree of modules, collect raw items from submodules, populate module scopes //! with defined items (so, we assign item ids in this phase) and record the set //! of unresolved imports and macros. //! //! While we walk tree of modules, we also record macro_rules definitions and //! expand calls to macro_rules defined macros. //! //! ## Resolving Imports //! //! We maintain a list of currently unresolved imports. On every iteration, we //! try to resolve some imports from this list. If the import is resolved, we //! record it, by adding an item to current module scope and, if necessary, by //! recursively populating glob imports. //! //! ## Resolving Macros //! //! macro_rules from the same crate use a global mutable namespace. We expand //! them immediately, when we collect modules. //! //! Macros from other crates (including proc-macros) can be used with //! `foo::bar!` syntax. We handle them similarly to imports. There's a list of //! unexpanded macros. On every iteration, we try to resolve each macro call //! path and, upon success, we run macro expansion and "collect module" phase on //! the result pub mod raw; pub mod per_ns; mod collector; mod mod_resolution; mod path_resolution; #[cfg(test)] mod tests; use std::sync::Arc; use hir_expand::{ast_id_map::FileAstId, diagnostics::DiagnosticSink, name::Name, MacroDefId}; use once_cell::sync::Lazy; use ra_arena::Arena; use ra_db::{CrateId, Edition, FileId}; use ra_prof::profile; use ra_syntax::ast; use rustc_hash::{FxHashMap, FxHashSet}; use crate::{ builtin_type::BuiltinType, db::DefDatabase2, nameres::{ diagnostics::DefDiagnostic, path_resolution::ResolveMode, per_ns::PerNs, raw::ImportId, }, path::Path, AstId, CrateModuleId, FunctionId, ImplId, ModuleDefId, ModuleId, TraitId, }; /// Contains all top-level defs from a macro-expanded crate #[derive(Debug, PartialEq, Eq)] pub struct CrateDefMap { krate: CrateId, edition: Edition, /// The prelude module for this crate. This either comes from an import /// marked with the `prelude_import` attribute, or (in the normal case) from /// a dependency (`std` or `core`). prelude: Option, extern_prelude: FxHashMap, root: CrateModuleId, modules: Arena, /// Some macros are not well-behavior, which leads to infinite loop /// e.g. macro_rules! foo { ($ty:ty) => { foo!($ty); } } /// We mark it down and skip it in collector /// /// FIXME: /// Right now it only handle a poison macro in a single crate, /// such that if other crate try to call that macro, /// the whole process will do again until it became poisoned in that crate. /// We should handle this macro set globally /// However, do we want to put it as a global variable? poison_macros: FxHashSet, diagnostics: Vec, } impl std::ops::Index for CrateDefMap { type Output = ModuleData; fn index(&self, id: CrateModuleId) -> &ModuleData { &self.modules[id] } } #[derive(Default, Debug, PartialEq, Eq)] pub struct ModuleData { pub parent: Option, pub children: FxHashMap, pub scope: ModuleScope, /// None for root pub declaration: Option>, /// None for inline modules. /// /// Note that non-inline modules, by definition, live inside non-macro file. pub definition: Option, pub impls: Vec, } #[derive(Default, Debug, PartialEq, Eq)] pub(crate) struct Declarations { fns: FxHashMap, FunctionId>, } #[derive(Debug, Default, PartialEq, Eq)] pub struct ModuleScope { items: FxHashMap, /// Macros visable in current module in legacy textual scope /// /// For macros invoked by an unquatified identifier like `bar!()`, `legacy_macros` will be searched in first. /// If it yields no result, then it turns to module scoped `macros`. /// It macros with name quatified with a path like `crate::foo::bar!()`, `legacy_macros` will be skipped, /// and only normal scoped `macros` will be searched in. /// /// Note that this automatically inherit macros defined textually before the definition of module itself. /// /// Module scoped macros will be inserted into `items` instead of here. // FIXME: Macro shadowing in one module is not properly handled. Non-item place macros will // be all resolved to the last one defined if shadowing happens. legacy_macros: FxHashMap, } static BUILTIN_SCOPE: Lazy> = Lazy::new(|| { BuiltinType::ALL .iter() .map(|(name, ty)| { (name.clone(), Resolution { def: PerNs::types(ty.clone().into()), import: None }) }) .collect() }); /// Legacy macros can only be accessed through special methods like `get_legacy_macros`. /// Other methods will only resolve values, types and module scoped macros only. impl ModuleScope { pub fn entries<'a>(&'a self) -> impl Iterator + 'a { //FIXME: shadowing self.items.iter().chain(BUILTIN_SCOPE.iter()) } /// Iterate over all module scoped macros pub fn macros<'a>(&'a self) -> impl Iterator + 'a { self.items .iter() .filter_map(|(name, res)| res.def.get_macros().map(|macro_| (name, macro_))) } /// Iterate over all legacy textual scoped macros visable at the end of the module pub fn legacy_macros<'a>(&'a self) -> impl Iterator + 'a { self.legacy_macros.iter().map(|(name, def)| (name, *def)) } /// Get a name from current module scope, legacy macros are not included pub fn get(&self, name: &Name) -> Option<&Resolution> { self.items.get(name).or_else(|| BUILTIN_SCOPE.get(name)) } pub fn traits<'a>(&'a self) -> impl Iterator + 'a { self.items.values().filter_map(|r| match r.def.take_types() { Some(ModuleDefId::TraitId(t)) => Some(t), _ => None, }) } fn get_legacy_macro(&self, name: &Name) -> Option { self.legacy_macros.get(name).copied() } } #[derive(Debug, Clone, PartialEq, Eq, Default)] pub struct Resolution { /// None for unresolved pub def: PerNs, /// ident by which this is imported into local scope. pub import: Option, } impl CrateDefMap { pub(crate) fn crate_def_map_query( // Note that this doesn't have `+ AstDatabase`! // This gurantess that `CrateDefMap` is stable across reparses. db: &impl DefDatabase2, krate: CrateId, ) -> Arc { let _p = profile("crate_def_map_query"); let def_map = { let crate_graph = db.crate_graph(); let edition = crate_graph.edition(krate); let mut modules: Arena = Arena::default(); let root = modules.alloc(ModuleData::default()); CrateDefMap { krate, edition, extern_prelude: FxHashMap::default(), prelude: None, root, modules, poison_macros: FxHashSet::default(), diagnostics: Vec::new(), } }; let def_map = collector::collect_defs(db, def_map); Arc::new(def_map) } pub fn krate(&self) -> CrateId { self.krate } pub fn root(&self) -> CrateModuleId { self.root } pub fn prelude(&self) -> Option { self.prelude } pub fn extern_prelude(&self) -> &FxHashMap { &self.extern_prelude } pub fn add_diagnostics( &self, db: &impl DefDatabase2, module: CrateModuleId, sink: &mut DiagnosticSink, ) { self.diagnostics.iter().for_each(|it| it.add_to(db, module, sink)) } pub fn resolve_path( &self, db: &impl DefDatabase2, original_module: CrateModuleId, path: &Path, ) -> (PerNs, Option) { let res = self.resolve_path_fp_with_macro(db, ResolveMode::Other, original_module, path); (res.resolved_def, res.segment_index) } pub fn modules(&self) -> impl Iterator + '_ { self.modules.iter().map(|(id, _data)| id) } pub fn modules_for_file(&self, file_id: FileId) -> impl Iterator + '_ { self.modules .iter() .filter(move |(_id, data)| data.definition == Some(file_id)) .map(|(id, _data)| id) } } mod diagnostics { use hir_expand::diagnostics::DiagnosticSink; use ra_db::RelativePathBuf; use ra_syntax::{ast, AstPtr}; use crate::{db::DefDatabase2, diagnostics::UnresolvedModule, nameres::CrateModuleId, AstId}; #[derive(Debug, PartialEq, Eq)] pub(super) enum DefDiagnostic { UnresolvedModule { module: CrateModuleId, declaration: AstId, candidate: RelativePathBuf, }, } impl DefDiagnostic { pub(super) fn add_to( &self, db: &impl DefDatabase2, target_module: CrateModuleId, sink: &mut DiagnosticSink, ) { match self { DefDiagnostic::UnresolvedModule { module, declaration, candidate } => { if *module != target_module { return; } let decl = declaration.to_node(db); sink.push(UnresolvedModule { file: declaration.file_id(), decl: AstPtr::new(&decl), candidate: candidate.clone(), }) } } } } }