//! FIXME: write short doc here use std::sync::Arc; use hir_def::{path::path, resolver::HasResolver, AdtId, FunctionId}; use hir_expand::diagnostics::DiagnosticSink; use ra_syntax::{ast, AstPtr}; use rustc_hash::FxHashSet; use crate::{ db::HirDatabase, diagnostics::{ MismatchedArgCount, MissingFields, MissingMatchArms, MissingOkInTailExpr, MissingPatFields, }, match_checking::{is_useful, MatchCheckCtx, Matrix, PatStack, Usefulness}, utils::variant_data, ApplicationTy, InferenceResult, Ty, TypeCtor, }; pub use hir_def::{ body::{ scope::{ExprScopes, ScopeEntry, ScopeId}, Body, BodySourceMap, ExprPtr, ExprSource, PatPtr, PatSource, }, expr::{ ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal, LogicOp, MatchArm, Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement, UnaryOp, }, src::HasSource, LocalFieldId, Lookup, VariantId, }; pub struct ExprValidator<'a, 'b: 'a> { func: FunctionId, infer: Arc, sink: &'a mut DiagnosticSink<'b>, } impl<'a, 'b> ExprValidator<'a, 'b> { pub fn new( func: FunctionId, infer: Arc, sink: &'a mut DiagnosticSink<'b>, ) -> ExprValidator<'a, 'b> { ExprValidator { func, infer, sink } } pub fn validate_body(&mut self, db: &dyn HirDatabase) { let body = db.body(self.func.into()); for (id, expr) in body.exprs.iter() { if let Some((variant_def, missed_fields, true)) = record_literal_missing_fields(db, &self.infer, id, expr) { self.create_record_literal_missing_fields_diagnostic( id, db, variant_def, missed_fields, ); } match expr { Expr::Match { expr, arms } => { self.validate_match(id, *expr, arms, db, self.infer.clone()); } Expr::Call { .. } | Expr::MethodCall { .. } => { self.validate_call(db, id, expr); } _ => {} } } for (id, pat) in body.pats.iter() { if let Some((variant_def, missed_fields, true)) = record_pattern_missing_fields(db, &self.infer, id, pat) { self.create_record_pattern_missing_fields_diagnostic( id, db, variant_def, missed_fields, ); } } let body_expr = &body[body.body_expr]; if let Expr::Block { tail: Some(t), .. } = body_expr { self.validate_results_in_tail_expr(body.body_expr, *t, db); } } fn create_record_literal_missing_fields_diagnostic( &mut self, id: ExprId, db: &dyn HirDatabase, variant_def: VariantId, missed_fields: Vec, ) { // XXX: only look at source_map if we do have missing fields let (_, source_map) = db.body_with_source_map(self.func.into()); if let Ok(source_ptr) = source_map.expr_syntax(id) { let root = source_ptr.file_syntax(db.upcast()); if let ast::Expr::RecordLit(record_lit) = &source_ptr.value.to_node(&root) { if let Some(field_list) = record_lit.record_field_list() { let variant_data = variant_data(db.upcast(), variant_def); let missed_fields = missed_fields .into_iter() .map(|idx| variant_data.fields()[idx].name.clone()) .collect(); self.sink.push(MissingFields { file: source_ptr.file_id, field_list: AstPtr::new(&field_list), missed_fields, }) } } } } fn create_record_pattern_missing_fields_diagnostic( &mut self, id: PatId, db: &dyn HirDatabase, variant_def: VariantId, missed_fields: Vec, ) { // XXX: only look at source_map if we do have missing fields let (_, source_map) = db.body_with_source_map(self.func.into()); if let Ok(source_ptr) = source_map.pat_syntax(id) { if let Some(expr) = source_ptr.value.as_ref().left() { let root = source_ptr.file_syntax(db.upcast()); if let ast::Pat::RecordPat(record_pat) = expr.to_node(&root) { if let Some(field_list) = record_pat.record_field_pat_list() { let variant_data = variant_data(db.upcast(), variant_def); let missed_fields = missed_fields .into_iter() .map(|idx| variant_data.fields()[idx].name.clone()) .collect(); self.sink.push(MissingPatFields { file: source_ptr.file_id, field_list: AstPtr::new(&field_list), missed_fields, }) } } } } } fn validate_call(&mut self, db: &dyn HirDatabase, call_id: ExprId, expr: &Expr) -> Option<()> { // Check that the number of arguments matches the number of parameters. // FIXME: Due to shortcomings in the current type system implementation, only emit this // diagnostic if there are no type mismatches in the containing function. if self.infer.type_mismatches.iter().next().is_some() { return Some(()); } let is_method_call = matches!(expr, Expr::MethodCall { .. }); let (callee, args) = match expr { Expr::Call { callee, args } => { let callee = &self.infer.type_of_expr[*callee]; let (callable, _) = callee.as_callable()?; (callable, args.clone()) } Expr::MethodCall { receiver, args, .. } => { let callee = self.infer.method_resolution(call_id)?; let mut args = args.clone(); args.insert(0, *receiver); (callee.into(), args) } _ => return None, }; let sig = db.callable_item_signature(callee); let params = sig.value.params(); let mut param_count = params.len(); let mut arg_count = args.len(); if arg_count != param_count { let (_, source_map) = db.body_with_source_map(self.func.into()); if let Ok(source_ptr) = source_map.expr_syntax(call_id) { if is_method_call { param_count -= 1; arg_count -= 1; } self.sink.push(MismatchedArgCount { file: source_ptr.file_id, call_expr: source_ptr.value, expected: param_count, found: arg_count, }); } } None } fn validate_match( &mut self, id: ExprId, match_expr: ExprId, arms: &[MatchArm], db: &dyn HirDatabase, infer: Arc, ) { let (body, source_map): (Arc, Arc) = db.body_with_source_map(self.func.into()); let match_expr_ty = match infer.type_of_expr.get(match_expr) { Some(ty) => ty, // If we can't resolve the type of the match expression // we cannot perform exhaustiveness checks. None => return, }; let cx = MatchCheckCtx { match_expr, body, infer: infer.clone(), db }; let pats = arms.iter().map(|arm| arm.pat); let mut seen = Matrix::empty(); for pat in pats { if let Some(pat_ty) = infer.type_of_pat.get(pat) { // We only include patterns whose type matches the type // of the match expression. If we had a InvalidMatchArmPattern // diagnostic or similar we could raise that in an else // block here. // // When comparing the types, we also have to consider that rustc // will automatically de-reference the match expression type if // necessary. // // FIXME we should use the type checker for this. if pat_ty == match_expr_ty || match_expr_ty .as_reference() .map(|(match_expr_ty, _)| match_expr_ty == pat_ty) .unwrap_or(false) { // If we had a NotUsefulMatchArm diagnostic, we could // check the usefulness of each pattern as we added it // to the matrix here. let v = PatStack::from_pattern(pat); seen.push(&cx, v); continue; } } // If we can't resolve the type of a pattern, or the pattern type doesn't // fit the match expression, we skip this diagnostic. Skipping the entire // diagnostic rather than just not including this match arm is preferred // to avoid the chance of false positives. return; } match is_useful(&cx, &seen, &PatStack::from_wild()) { Ok(Usefulness::Useful) => (), // if a wildcard pattern is not useful, then all patterns are covered Ok(Usefulness::NotUseful) => return, // this path is for unimplemented checks, so we err on the side of not // reporting any errors _ => return, } if let Ok(source_ptr) = source_map.expr_syntax(id) { let root = source_ptr.file_syntax(db.upcast()); if let ast::Expr::MatchExpr(match_expr) = &source_ptr.value.to_node(&root) { if let (Some(match_expr), Some(arms)) = (match_expr.expr(), match_expr.match_arm_list()) { self.sink.push(MissingMatchArms { file: source_ptr.file_id, match_expr: AstPtr::new(&match_expr), arms: AstPtr::new(&arms), }) } } } } fn validate_results_in_tail_expr(&mut self, body_id: ExprId, id: ExprId, db: &dyn HirDatabase) { // the mismatch will be on the whole block currently let mismatch = match self.infer.type_mismatch_for_expr(body_id) { Some(m) => m, None => return, }; let core_result_path = path![core::result::Result]; let resolver = self.func.resolver(db.upcast()); let core_result_enum = match resolver.resolve_known_enum(db.upcast(), &core_result_path) { Some(it) => it, _ => return, }; let core_result_ctor = TypeCtor::Adt(AdtId::EnumId(core_result_enum)); let params = match &mismatch.expected { Ty::Apply(ApplicationTy { ctor, parameters }) if ctor == &core_result_ctor => { parameters } _ => return, }; if params.len() == 2 && params[0] == mismatch.actual { let (_, source_map) = db.body_with_source_map(self.func.into()); if let Ok(source_ptr) = source_map.expr_syntax(id) { self.sink .push(MissingOkInTailExpr { file: source_ptr.file_id, expr: source_ptr.value }); } } } } pub fn record_literal_missing_fields( db: &dyn HirDatabase, infer: &InferenceResult, id: ExprId, expr: &Expr, ) -> Option<(VariantId, Vec, /*exhaustive*/ bool)> { let (fields, exhausitve) = match expr { Expr::RecordLit { path: _, fields, spread } => (fields, spread.is_none()), _ => return None, }; let variant_def = infer.variant_resolution_for_expr(id)?; if let VariantId::UnionId(_) = variant_def { return None; } let variant_data = variant_data(db.upcast(), variant_def); let specified_fields: FxHashSet<_> = fields.iter().map(|f| &f.name).collect(); let missed_fields: Vec = variant_data .fields() .iter() .filter_map(|(f, d)| if specified_fields.contains(&d.name) { None } else { Some(f) }) .collect(); if missed_fields.is_empty() { return None; } Some((variant_def, missed_fields, exhausitve)) } pub fn record_pattern_missing_fields( db: &dyn HirDatabase, infer: &InferenceResult, id: PatId, pat: &Pat, ) -> Option<(VariantId, Vec, /*exhaustive*/ bool)> { let (fields, exhaustive) = match pat { Pat::Record { path: _, args, ellipsis } => (args, !ellipsis), _ => return None, }; let variant_def = infer.variant_resolution_for_pat(id)?; if let VariantId::UnionId(_) = variant_def { return None; } let variant_data = variant_data(db.upcast(), variant_def); let specified_fields: FxHashSet<_> = fields.iter().map(|f| &f.name).collect(); let missed_fields: Vec = variant_data .fields() .iter() .filter_map(|(f, d)| if specified_fields.contains(&d.name) { None } else { Some(f) }) .collect(); if missed_fields.is_empty() { return None; } Some((variant_def, missed_fields, exhaustive)) } #[cfg(test)] mod tests { use expect::{expect, Expect}; use ra_db::fixture::WithFixture; use crate::{diagnostics::MismatchedArgCount, test_db::TestDB}; fn check_diagnostic(ra_fixture: &str, expect: Expect) { let msg = TestDB::with_single_file(ra_fixture).0.diagnostic::().0; expect.assert_eq(&msg); } fn check_no_diagnostic(ra_fixture: &str) { let (s, diagnostic_count) = TestDB::with_single_file(ra_fixture).0.diagnostic::(); assert_eq!(0, diagnostic_count, "expected no diagnostic, found one: {}", s); } #[test] fn simple_free_fn_zero() { check_diagnostic( r" fn zero() {} fn f() { zero(1); } ", expect![["\"zero(1)\": Expected 0 arguments, found 1\n"]], ); check_no_diagnostic( r" fn zero() {} fn f() { zero(); } ", ); } #[test] fn simple_free_fn_one() { check_diagnostic( r" fn one(arg: u8) {} fn f() { one(); } ", expect![["\"one()\": Expected 1 argument, found 0\n"]], ); check_no_diagnostic( r" fn one(arg: u8) {} fn f() { one(1); } ", ); } #[test] fn method_as_fn() { check_diagnostic( r" struct S; impl S { fn method(&self) {} } fn f() { S::method(); } ", expect![["\"S::method()\": Expected 1 argument, found 0\n"]], ); check_no_diagnostic( r" struct S; impl S { fn method(&self) {} } fn f() { S::method(&S); S.method(); } ", ); } #[test] fn method_with_arg() { check_diagnostic( r" struct S; impl S { fn method(&self, arg: u8) {} } fn f() { S.method(); } ", expect![["\"S.method()\": Expected 1 argument, found 0\n"]], ); check_no_diagnostic( r" struct S; impl S { fn method(&self, arg: u8) {} } fn f() { S::method(&S, 0); S.method(1); } ", ); } #[test] fn tuple_struct() { check_diagnostic( r" struct Tup(u8, u16); fn f() { Tup(0); } ", expect![["\"Tup(0)\": Expected 2 arguments, found 1\n"]], ) } #[test] fn enum_variant() { check_diagnostic( r" enum En { Variant(u8, u16), } fn f() { En::Variant(0); } ", expect![["\"En::Variant(0)\": Expected 2 arguments, found 1\n"]], ) } }