//! Coercion logic. Coercions are certain type conversions that can implicitly //! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions //! like going from `&Vec` to `&[T]`. //! //! See: https://doc.rust-lang.org/nomicon/coercions.html use hir_def::{lang_item::LangItemTarget, type_ref::Mutability}; use test_utils::tested_by; use crate::{autoderef, traits::Solution, Obligation, Substs, TraitRef, Ty, TypeCtor}; use super::{unify::TypeVarValue, InEnvironment, InferTy, InferenceContext}; impl<'a> InferenceContext<'a> { /// Unify two types, but may coerce the first one to the second one /// using "implicit coercion rules" if needed. pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool { let from_ty = self.resolve_ty_shallow(from_ty).into_owned(); let to_ty = self.resolve_ty_shallow(to_ty); self.coerce_inner(from_ty, &to_ty) } /// Merge two types from different branches, with possible implicit coerce. /// /// Note that it is only possible that one type are coerced to another. /// Coercing both types to another least upper bound type is not possible in rustc, /// which will simply result in "incompatible types" error. pub(super) fn coerce_merge_branch(&mut self, ty1: &Ty, ty2: &Ty) -> Ty { if self.coerce(ty1, ty2) { ty2.clone() } else if self.coerce(ty2, ty1) { ty1.clone() } else { tested_by!(coerce_merge_fail_fallback); // For incompatible types, we use the latter one as result // to be better recovery for `if` without `else`. ty2.clone() } } fn coerce_inner(&mut self, mut from_ty: Ty, to_ty: &Ty) -> bool { match (&from_ty, to_ty) { // Never type will make type variable to fallback to Never Type instead of Unknown. (ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => { let var = self.table.new_maybe_never_type_var(); self.table.var_unification_table.union_value(*tv, TypeVarValue::Known(var)); return true; } (ty_app!(TypeCtor::Never), _) => return true, // Trivial cases, this should go after `never` check to // avoid infer result type to be never _ => { if self.table.unify_inner_trivial(&from_ty, &to_ty, 0) { return true; } } } // Pointer weakening and function to pointer match (&mut from_ty, to_ty) { // `*mut T`, `&mut T, `&T`` -> `*const T` // `&mut T` -> `&T` // `&mut T` -> `*mut T` (ty_app!(c1@TypeCtor::RawPtr(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared))) | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared))) | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::Ref(Mutability::Shared))) | (ty_app!(c1@TypeCtor::Ref(Mutability::Mut)), ty_app!(c2@TypeCtor::RawPtr(_))) => { *c1 = *c2; } // Illegal mutablity conversion ( ty_app!(TypeCtor::RawPtr(Mutability::Shared)), ty_app!(TypeCtor::RawPtr(Mutability::Mut)), ) | ( ty_app!(TypeCtor::Ref(Mutability::Shared)), ty_app!(TypeCtor::Ref(Mutability::Mut)), ) => return false, // `{function_type}` -> `fn()` (ty_app!(TypeCtor::FnDef(_)), ty_app!(TypeCtor::FnPtr { .. })) => { match from_ty.callable_sig(self.db) { None => return false, Some(sig) => { let num_args = sig.params_and_return.len() as u16 - 1; from_ty = Ty::apply(TypeCtor::FnPtr { num_args }, Substs(sig.params_and_return)); } } } (ty_app!(TypeCtor::Closure { .. }, params), ty_app!(TypeCtor::FnPtr { .. })) => { from_ty = params[0].clone(); } _ => {} } if let Some(ret) = self.try_coerce_unsized(&from_ty, &to_ty) { return ret; } // Auto Deref if cannot coerce match (&from_ty, to_ty) { // FIXME: DerefMut (ty_app!(TypeCtor::Ref(_), st1), ty_app!(TypeCtor::Ref(_), st2)) => { self.unify_autoderef_behind_ref(&st1[0], &st2[0]) } // Otherwise, normal unify _ => self.unify(&from_ty, to_ty), } } /// Coerce a type using `from_ty: CoerceUnsized` /// /// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option { let krate = self.resolver.krate().unwrap(); let coerce_unsized_trait = match self.db.lang_item(krate, "coerce_unsized".into()) { Some(LangItemTarget::TraitId(trait_)) => trait_, _ => return None, }; let generic_params = crate::utils::generics(self.db.upcast(), coerce_unsized_trait.into()); if generic_params.len() != 2 { // The CoerceUnsized trait should have two generic params: Self and T. return None; } let substs = Substs::build_for_generics(&generic_params) .push(from_ty.clone()) .push(to_ty.clone()) .build(); let trait_ref = TraitRef { trait_: coerce_unsized_trait, substs }; let goal = InEnvironment::new(self.trait_env.clone(), Obligation::Trait(trait_ref)); let canonicalizer = self.canonicalizer(); let canonicalized = canonicalizer.canonicalize_obligation(goal); let solution = self.db.trait_solve(krate, canonicalized.value.clone())?; match solution { Solution::Unique(v) => { canonicalized.apply_solution(self, v.0); } _ => return None, }; Some(true) } /// Unify `from_ty` to `to_ty` with optional auto Deref /// /// Note that the parameters are already stripped the outer reference. fn unify_autoderef_behind_ref(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool { let canonicalized = self.canonicalizer().canonicalize_ty(from_ty.clone()); let to_ty = self.resolve_ty_shallow(&to_ty); // FIXME: Auto DerefMut for derefed_ty in autoderef::autoderef( self.db, self.resolver.krate(), InEnvironment { value: canonicalized.value.clone(), environment: self.trait_env.clone(), }, ) { let derefed_ty = canonicalized.decanonicalize_ty(derefed_ty.value); match (&*self.resolve_ty_shallow(&derefed_ty), &*to_ty) { // Stop when constructor matches. (ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => { // It will not recurse to `coerce`. return self.table.unify_substs(st1, st2, 0); } _ => { if self.table.unify_inner_trivial(&derefed_ty, &to_ty, 0) { return true; } } } } false } }