//! Unification and canonicalization logic. use std::borrow::Cow; use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue}; use test_utils::tested_by; use super::{InferenceContext, Obligation}; use crate::{ db::HirDatabase, utils::make_mut_slice, Canonical, InEnvironment, InferTy, ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty, TypeCtor, TypeWalk, }; impl<'a, D: HirDatabase> InferenceContext<'a, D> { pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b, D> where 'a: 'b, { Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() } } } pub(super) struct Canonicalizer<'a, 'b, D: HirDatabase> where 'a: 'b, { ctx: &'b mut InferenceContext<'a, D>, free_vars: Vec, /// A stack of type variables that is used to detect recursive types (which /// are an error, but we need to protect against them to avoid stack /// overflows). var_stack: Vec, } pub(super) struct Canonicalized { pub value: Canonical, free_vars: Vec, } impl<'a, 'b, D: HirDatabase> Canonicalizer<'a, 'b, D> where 'a: 'b, { fn add(&mut self, free_var: InferTy) -> usize { self.free_vars.iter().position(|&v| v == free_var).unwrap_or_else(|| { let next_index = self.free_vars.len(); self.free_vars.push(free_var); next_index }) } fn do_canonicalize_ty(&mut self, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if self.var_stack.contains(&inner) { // recursive type return tv.fallback_value(); } if let Some(known_ty) = self.ctx.table.var_unification_table.inlined_probe_value(inner).known() { self.var_stack.push(inner); let result = self.do_canonicalize_ty(known_ty.clone()); self.var_stack.pop(); result } else { let root = self.ctx.table.var_unification_table.find(inner); let free_var = match tv { InferTy::TypeVar(_) => InferTy::TypeVar(root), InferTy::IntVar(_) => InferTy::IntVar(root), InferTy::FloatVar(_) => InferTy::FloatVar(root), InferTy::MaybeNeverTypeVar(_) => InferTy::MaybeNeverTypeVar(root), }; let position = self.add(free_var); Ty::Bound(position as u32) } } _ => ty, }) } fn do_canonicalize_trait_ref(&mut self, mut trait_ref: TraitRef) -> TraitRef { for ty in make_mut_slice(&mut trait_ref.substs.0) { *ty = self.do_canonicalize_ty(ty.clone()); } trait_ref } fn into_canonicalized(self, result: T) -> Canonicalized { Canonicalized { value: Canonical { value: result, num_vars: self.free_vars.len() }, free_vars: self.free_vars, } } fn do_canonicalize_projection_ty(&mut self, mut projection_ty: ProjectionTy) -> ProjectionTy { for ty in make_mut_slice(&mut projection_ty.parameters.0) { *ty = self.do_canonicalize_ty(ty.clone()); } projection_ty } fn do_canonicalize_projection_predicate( &mut self, projection: ProjectionPredicate, ) -> ProjectionPredicate { let ty = self.do_canonicalize_ty(projection.ty); let projection_ty = self.do_canonicalize_projection_ty(projection.projection_ty); ProjectionPredicate { ty, projection_ty } } // FIXME: add some point, we need to introduce a `Fold` trait that abstracts // over all the things that can be canonicalized (like Chalk and rustc have) pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized { let result = self.do_canonicalize_ty(ty); self.into_canonicalized(result) } pub(crate) fn canonicalize_obligation( mut self, obligation: InEnvironment, ) -> Canonicalized> { let result = match obligation.value { Obligation::Trait(tr) => Obligation::Trait(self.do_canonicalize_trait_ref(tr)), Obligation::Projection(pr) => { Obligation::Projection(self.do_canonicalize_projection_predicate(pr)) } }; self.into_canonicalized(InEnvironment { value: result, environment: obligation.environment, }) } } impl Canonicalized { pub fn decanonicalize_ty(&self, mut ty: Ty) -> Ty { ty.walk_mut_binders( &mut |ty, binders| { if let &mut Ty::Bound(idx) = ty { if idx as usize >= binders && (idx as usize - binders) < self.free_vars.len() { *ty = Ty::Infer(self.free_vars[idx as usize - binders]); } } }, 0, ); ty } pub fn apply_solution( &self, ctx: &mut InferenceContext<'_, impl HirDatabase>, solution: Canonical>, ) { // the solution may contain new variables, which we need to convert to new inference vars let new_vars = Substs((0..solution.num_vars).map(|_| ctx.table.new_type_var()).collect()); for (i, ty) in solution.value.into_iter().enumerate() { let var = self.free_vars[i]; // eagerly replace projections in the type; we may be getting types // e.g. from where clauses where this hasn't happened yet let ty = ctx.normalize_associated_types_in(ty.subst_bound_vars(&new_vars)); ctx.table.unify(&Ty::Infer(var), &ty); } } } pub fn unify(ty1: &Canonical, ty2: &Canonical) -> Option { let mut table = InferenceTable::new(); let vars = Substs::builder(ty1.num_vars).fill(std::iter::repeat_with(|| table.new_type_var())).build(); let ty_with_vars = ty1.value.clone().subst_bound_vars(&vars); if !table.unify(&ty_with_vars, &ty2.value) { return None; } Some( Substs::builder(ty1.num_vars) .fill(vars.iter().map(|v| table.resolve_ty_completely(v.clone()))) .build(), ) } #[derive(Clone, Debug)] pub(crate) struct InferenceTable { pub(super) var_unification_table: InPlaceUnificationTable, } impl InferenceTable { pub fn new() -> Self { InferenceTable { var_unification_table: InPlaceUnificationTable::new() } } pub fn new_type_var(&mut self) -> Ty { Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } pub fn new_integer_var(&mut self) -> Ty { Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } pub fn new_float_var(&mut self) -> Ty { Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown))) } pub fn new_maybe_never_type_var(&mut self) -> Ty { Ty::Infer(InferTy::MaybeNeverTypeVar( self.var_unification_table.new_key(TypeVarValue::Unknown), )) } pub fn resolve_ty_completely(&mut self, ty: Ty) -> Ty { self.resolve_ty_completely_inner(&mut Vec::new(), ty) } pub fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty { self.resolve_ty_as_possible_inner(&mut Vec::new(), ty) } pub fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { self.unify_inner(ty1, ty2, 0) } pub fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool { substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth)) } fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool { if depth > 1000 { // prevent stackoverflows panic!("infinite recursion in unification"); } if ty1 == ty2 { return true; } // try to resolve type vars first let ty1 = self.resolve_ty_shallow(ty1); let ty2 = self.resolve_ty_shallow(ty2); match (&*ty1, &*ty2) { (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => { self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1) } _ => self.unify_inner_trivial(&ty1, &ty2), } } pub(super) fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool { match (ty1, ty2) { (Ty::Unknown, _) | (_, Ty::Unknown) => true, (Ty::Placeholder(p1), Ty::Placeholder(p2)) if *p1 == *p2 => true, (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2))) | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2))) | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) | ( Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)), Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)), ) => { // both type vars are unknown since we tried to resolve them self.var_unification_table.union(*tv1, *tv2); true } // The order of MaybeNeverTypeVar matters here. // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar. // Unifying MaybeNeverTypeVar and other concrete type will let the former become it. (Ty::Infer(InferTy::TypeVar(tv)), other) | (other, Ty::Infer(InferTy::TypeVar(tv))) | (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other) | (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv))) | (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_))) | (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv))) | (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_))) | (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => { // the type var is unknown since we tried to resolve it self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone())); true } _ => false, } } /// If `ty` is a type variable with known type, returns that type; /// otherwise, return ty. pub fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> { let mut ty = Cow::Borrowed(ty); // The type variable could resolve to a int/float variable. Hence try // resolving up to three times; each type of variable shouldn't occur // more than once for i in 0..3 { if i > 0 { tested_by!(type_var_resolves_to_int_var); } match &*ty { Ty::Infer(tv) => { let inner = tv.to_inner(); match self.var_unification_table.inlined_probe_value(inner).known() { Some(known_ty) => { // The known_ty can't be a type var itself ty = Cow::Owned(known_ty.clone()); } _ => return ty, } } _ => return ty, } } log::error!("Inference variable still not resolved: {:?}", ty); ty } /// Resolves the type as far as currently possible, replacing type variables /// by their known types. All types returned by the infer_* functions should /// be resolved as far as possible, i.e. contain no type variables with /// known type. fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { tested_by!(type_var_cycles_resolve_as_possible); // recursive type return tv.fallback_value(); } if let Some(known_ty) = self.var_unification_table.inlined_probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_as_possible_inner(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { ty } } _ => ty, }) } /// Resolves the type completely; type variables without known type are /// replaced by Ty::Unknown. fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Infer(tv) => { let inner = tv.to_inner(); if tv_stack.contains(&inner) { tested_by!(type_var_cycles_resolve_completely); // recursive type return tv.fallback_value(); } if let Some(known_ty) = self.var_unification_table.inlined_probe_value(inner).known() { // known_ty may contain other variables that are known by now tv_stack.push(inner); let result = self.resolve_ty_completely_inner(tv_stack, known_ty.clone()); tv_stack.pop(); result } else { tv.fallback_value() } } _ => ty, }) } } /// The ID of a type variable. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] pub struct TypeVarId(pub(super) u32); impl UnifyKey for TypeVarId { type Value = TypeVarValue; fn index(&self) -> u32 { self.0 } fn from_index(i: u32) -> Self { TypeVarId(i) } fn tag() -> &'static str { "TypeVarId" } } /// The value of a type variable: either we already know the type, or we don't /// know it yet. #[derive(Clone, PartialEq, Eq, Debug)] pub enum TypeVarValue { Known(Ty), Unknown, } impl TypeVarValue { fn known(&self) -> Option<&Ty> { match self { TypeVarValue::Known(ty) => Some(ty), TypeVarValue::Unknown => None, } } } impl UnifyValue for TypeVarValue { type Error = NoError; fn unify_values(value1: &Self, value2: &Self) -> Result { match (value1, value2) { // We should never equate two type variables, both of which have // known types. Instead, we recursively equate those types. (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!( "equating two type variables, both of which have known types: {:?} and {:?}", t1, t2 ), // If one side is known, prefer that one. (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()), (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()), (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown), } } }