//! Helper functions for working with def, which don't need to be a separate //! query, but can't be computed directly from `*Data` (ie, which need a `db`). use std::sync::Arc; use hir_def::{ adt::VariantData, db::DefDatabase, generics::{GenericParams, TypeParamData}, path::Path, resolver::{HasResolver, TypeNs}, type_ref::TypeRef, AssocContainerId, GenericDefId, Lookup, TraitId, TypeAliasId, TypeParamId, VariantId, }; use hir_expand::name::{name, Name}; fn direct_super_traits(db: &impl DefDatabase, trait_: TraitId) -> Vec { let resolver = trait_.resolver(db); // returning the iterator directly doesn't easily work because of // lifetime problems, but since there usually shouldn't be more than a // few direct traits this should be fine (we could even use some kind of // SmallVec if performance is a concern) db.generic_params(trait_.into()) .where_predicates .iter() .filter_map(|pred| match &pred.type_ref { TypeRef::Path(p) if p == &Path::from(name![Self]) => pred.bound.as_path(), _ => None, }) .filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) { Some(TypeNs::TraitId(t)) => Some(t), _ => None, }) .collect() } /// Returns an iterator over the whole super trait hierarchy (including the /// trait itself). pub(super) fn all_super_traits(db: &impl DefDatabase, trait_: TraitId) -> Vec { // we need to take care a bit here to avoid infinite loops in case of cycles // (i.e. if we have `trait A: B; trait B: A;`) let mut result = vec![trait_]; let mut i = 0; while i < result.len() { let t = result[i]; // yeah this is quadratic, but trait hierarchies should be flat // enough that this doesn't matter for tt in direct_super_traits(db, t) { if !result.contains(&tt) { result.push(tt); } } i += 1; } result } pub(super) fn associated_type_by_name_including_super_traits( db: &impl DefDatabase, trait_: TraitId, name: &Name, ) -> Option { all_super_traits(db, trait_) .into_iter() .find_map(|t| db.trait_data(t).associated_type_by_name(name)) } pub(super) fn variant_data(db: &impl DefDatabase, var: VariantId) -> Arc { match var { VariantId::StructId(it) => db.struct_data(it).variant_data.clone(), VariantId::UnionId(it) => db.union_data(it).variant_data.clone(), VariantId::EnumVariantId(it) => { db.enum_data(it.parent).variants[it.local_id].variant_data.clone() } } } /// Helper for mutating `Arc<[T]>` (i.e. `Arc::make_mut` for Arc slices). /// The underlying values are cloned if there are other strong references. pub(crate) fn make_mut_slice(a: &mut Arc<[T]>) -> &mut [T] { if Arc::get_mut(a).is_none() { *a = a.iter().cloned().collect(); } Arc::get_mut(a).unwrap() } pub(crate) fn generics(db: &impl DefDatabase, def: GenericDefId) -> Generics { let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def))); Generics { def, params: db.generic_params(def), parent_generics } } pub(crate) struct Generics { def: GenericDefId, pub(crate) params: Arc, parent_generics: Option>, } impl Generics { pub(crate) fn iter<'a>(&'a self) -> impl Iterator + 'a { self.parent_generics .as_ref() .into_iter() .flat_map(|it| it.params.types.iter()) .chain(self.params.types.iter()) .enumerate() .map(|(i, (_local_id, p))| (i as u32, p)) } pub(crate) fn iter_parent<'a>(&'a self) -> impl Iterator + 'a { self.parent_generics .as_ref() .into_iter() .flat_map(|it| it.params.types.iter()) .enumerate() .map(|(i, (_local_id, p))| (i as u32, p)) } pub(crate) fn len(&self) -> usize { self.len_split().0 } /// (total, parents, child) pub(crate) fn len_split(&self) -> (usize, usize, usize) { let parent = self.parent_generics.as_ref().map_or(0, |p| p.len()); let child = self.params.types.len(); (parent + child, parent, child) } pub(crate) fn param_idx(&self, param: TypeParamId) -> u32 { self.find_param(param).0 } pub(crate) fn param_name(&self, param: TypeParamId) -> Name { self.find_param(param).1.name.clone() } fn find_param(&self, param: TypeParamId) -> (u32, &TypeParamData) { if param.parent == self.def { let (idx, (_local_id, data)) = self .params .types .iter() .enumerate() .find(|(_, (idx, _))| *idx == param.local_id) .unwrap(); let (_total, parent_len, _child) = self.len_split(); return ((parent_len + idx) as u32, data); } self.parent_generics.as_ref().unwrap().find_param(param) } } fn parent_generic_def(db: &impl DefDatabase, def: GenericDefId) -> Option { let container = match def { GenericDefId::FunctionId(it) => it.lookup(db).container, GenericDefId::TypeAliasId(it) => it.lookup(db).container, GenericDefId::ConstId(it) => it.lookup(db).container, GenericDefId::EnumVariantId(it) => return Some(it.parent.into()), GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None, }; match container { AssocContainerId::ImplId(it) => Some(it.into()), AssocContainerId::TraitId(it) => Some(it.into()), AssocContainerId::ModuleId(_) | AssocContainerId::DefWithBodyId(_) => None, } }